Spelling suggestions: "subject:"aminoimidazole"" "subject:"aminoimidazoles""
1 |
Sources of 2,5-Diaminoimidazolone Lesions in DNA Damage Initiated by Hydroxyl Radical AttackThomas, Caroline Suzanne, Pollard, Hannah Catherine, Razskazovskiy, Yuriy, Roginskaya, Marina 02 July 2020 (has links)
The present study reports radiation-chemical yields of 2.5-diaminoimidazolone (Iz) derivatives in X-irradiated phosphate-buffered solutions of guanosine and double-stranded DNA. Various gassing conditions (air, N20/O2 (4:1), N2O, vacuum) were employed to elucidate the contribution of several alternative pathways leading to Iz in reactions initiated by hydroxyl radical attack on guanine. In all systems, Iz was identified as the second by abundance guanine degradation product after 8-oxoguanine, formed in 1:5 (guanosine) and 1:3.3 (DNA) ratio to the latter in air-saturated solutions. Experimental data strongly suggest that the addition of molecular oxygen to the neutral guanine radical G(-H)• plays a major in Iz production in oxygenated solutions of double-stranded DNA while in other systems it may compete with recombination of G(-H)• with superoxide and/or alkyl peroxyl radicals. The production of Iz through hydroxyl radical attack on 8-oxoguanine was also shown to take place although the chemical yield of Iz (ca 6%) in this process is too low to compete with the other pathways. The linearity of Iz accumulation with dose also indicates a negligible contribution of this channel to its yield in all systems.
|
2 |
The Reactivity of 2,5-Diaminoimidazolone Base Modification Towards Aliphatic Primary Amino Derivatives: Nucleophilic Substitution at C5 as a Potential Source of Abasic Sites in Oxidatively Damaged DNARoginskaya, Marina, Janson, Hannah, Seneviratni, Devanamuni, Razskazovskiy, Yuriy 01 March 2017 (has links)
N5-deoxyribosyl derivatives of 2,5-diaminoimidazolone formed by oxidative damage to the guanine bases in 2-deoxyguanosine and highly polymerized DNA readily undergo nucleophilic substitution at C5 in reaction with primary amines in neutral aqueous solutions at 37–70 °C, as it was found in a kinetic study using reverse-phase HPLC. The reaction of 2-amino-5-[(2′-deoxy-β-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) with excess of ethanolamine, alanine and γ-aminobutyric acid (0.2–1 M) is a pseudo-first-order process that proceeds with 45–80 % yields depending on the nature of the amine, its concentration, and the reaction temperature. In the case of ethanolamine, the corresponding bimolecular rate constant has a pre-exponential factor and activation energy of 1.1 × 105 s−1 and 47 kJ mol−1, respectively. The reaction is highly competitive with the previously described hydrolysis of dIz into 2,2-diamino-4-[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone under biologically relevant conditions. A similar reaction with the same lesion in polymeric DNA results in the release of a low-molecular-weight analog of dIz, presumably producing an abasic site as the second reaction product. Kinetic characteristics of this process make it a potentially important source of abasic sites in oxidatively damaged DNA, formed through the reaction of 2,5-diaminoimidazolone lesions with naturally abundant DNA-affinic amines and proteins. The release of low-molecular-weight analogs of dIz can potentially be employed for quantification of imidazolone lesions in oxidized DNA. The half-life of imidazolone lesions in double-stranded DNA evaluated using this approach was found to be 154 min at 37 °C.
|
Page generated in 0.057 seconds