• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of original block copolymers by combination of RAFT polymerization and supramolecular self-assembly / Synthèse de copolymères à blocs originaux par la combinaison de la polymérisation RAFT et l'auto-assemblage supramoléculaire

Chen, Senbin 20 April 2012 (has links)
Ce travail a porté sur la préparation de copolymères à blocs et l’étude de leur assemblage supramoléculaire basé sur des liaisons hydrogènes entre les motifs homocomplémentaires ou hétérocomplémentaires. La stratégie de synthèse était basée sur la combinaison de la polymérisation radicalaire contrôlée de type RAFT et de la chimie supramoléculaire. Dans le chapitre 2, nous avons développé une stratégie s'appuyant sur la conception d'agents RAFT portant des groupements de type thymine / diaminopyridine (DAP) capables de générer des copolymères en étoile de type « miktoarm » bien définis. Pour élargir le champ d’application de ces agents RAFT capables d’établir des liaisons H, nous avons également étudié, dans le chapitre 3, la préparation d’agents RAFT fonctionnalisés par des motifs présentant de très hautes constantes de liaison. Le couple Hamilton / barbiturate (log (K) ≈ 4-5) a été sélectionné pour générer de plus stables copolymères à blocs supramoléculaires. Afin d’élaborer des macromolécules originales aux hautes propriétés d’association et de simplifier la stratégie de la synthèse, nous avons finalement exploré la préparation de copolymères tribloc ABC supramoléculaires à base de PA11 (oligomères OPA11) dans le chapitre 4. L’introduction d'un groupe dithiobenzoate pertinemment choisi sur les oligomères conduit à l’obtention de macroagents RAFT qui permettent la préparation de copolymères tribloc ABC supramoléculaires, où A est semi-cristallin, B à l'état caoutchouteux et C à l'état vitreux. Les études sur l'incorporation de tels copolymères dans les réseaux époxy sont en cours. / This work dealt with the preparation and the study of supramolecular block copolymers based on hydrogen-bonding between homocomplementary or heterocomplementary stickers. The synthetic strategy was based on the combination of RAFT-mediated controlled radical polymerization and supramolecular chemistry. In the Chapter 2, we developed a strategy relying on the design of RAFT agents bearing thymine/diaminopyridine (DAP) recognition pairs and capable to grow well-defined miktoarm star supramolecular copolymers. To further extend the scope of H-bonding RAFT agents, in the Chapter 3, we also investigated the preparation of RAFT agents functionalized with motifs exhibiting very high binding constants. The Hamilton/barbiturate couple (log(K)≈4-5) was selected to generate more stable supramolecular block copolymers. Aiming at elaborating original associating macromolecules and at simplifying the strategy of synthesis, we finally explored the preparation ABC triblock supramolecular copolymers based on PA11 oligomers (OPA11) in Chapter 4. Ligation of a relevant dithiobenzoate group on the oligomers afforded oligomeric RAFT agents that allow for the preparation of ABC triblock supramolecular copolymers, where A is semi-crystalline, B in rubbery state and C in glassy state. Studies on the incorporation of such copolymers in epoxy networks are under progress.
2

Zielgerichtete Synthese von helikalen und zyklischen Harnstoffoligomeren über die Beeinflussung der Kettenkonformation

Gube, Andrea 26 November 2012 (has links) (PDF)
In der vorliegenden Arbeit sollten sowohl neue Polyharnstoffe als auch makrozyklische Harnstoffe bzw. Amidine auf Basis von 2,6-Diaminopyridin im Hinblick auf eine potentielle Anwendung in der supramolekulare Chemie hergestellt und charakterisiert werden. Ab initio-Berechnungen zufolge, sollten die linearen Harnstoffoligomere aufgrund von nichtkovalenten Wechselwirkungen ab dem Tetramer eine helikale Struktur aufweisen. In dieser Arbeit sollten die Harnstoffoligomere über einen stufenweisen Aufbau mit 2,6-Diaminopyridin (2,6-DAPy) bzw. dem Dimermolekül als Ausgangsstoff synthetisiert werden. Die Idee war unter Verwendung des Dimers im ersten Aufbauschritt das lineare Tetramer als Hauptprodukt zu erhalten und die Bildung von zyklischen Trimeren zu unterbinden. Bei der Darstellung der Harnstoffoligomere mit einem Überschuss an 2,6-DAPy und N,N'-Carbonyldiimidazol (CDI) bei 100 °C und bei Raumtemperatur in DMSO wurden Harnstoffgemische aus linearem Dimer (linH-Di), Trimer (linH-Tri), Tetramer (linH-Tetra) und zyklischem Trimer (cyH-Tri1) erhalten. Eine Trennung dieser durch Extraktion oder mittels Säulenchromatographie konnte aufgrund der strukturellen Ähnlichkeiten der Verbindungen nicht durchgeführt werden. Allerdings konnte durch Verwendung von THF das lineare Dimer bei Raumtemperatur rein erhalten werden. Eine Umsetzung des Dimers linH-Di mit CDI in DMSO bei 100 °C führte nicht zu den gewünschten offenkettigen Harnstoffen, sondern zu zyklischen Verbindungen. NMR-Untersuchungen zeigten, dass es sich hierbei um ein Gemisch aus zwei zyklischen Trimeren und einem zyklischen Tetramer handelt. Zwei Hauptgründe sind für die Bildung der Zyklen im Falle des Dimers als Ausgangsstoff verantwortlich: Erstens ist das Dimer in DMSO bei höheren Temperaturen instabil, was durch entsprechende Versuche bei 100 bis 140 °C gezeigt werden konnte. In den NMR-Spektren sind neben dem zyklischen Trimer cyH-Tri1 sowohl lineare Harnstoffe linH-Tri und linH-Tetra als auch das 2,6-Diaminopyridin nachzuweisen. Zweitens belegen sowohl TGA-Messungen als auch temperaturabhängige Synthesen (80 °C bis 180 °C in DMSO), dass das zyklische Trimer cyH-Tri1 thermodynamisch am stabilsten ist. Die unerwartete Bildung der zyklischen Trimere bei den Umsetzungen des linH-Di kann durch Austausch- und Nebenreaktionen erklärt werden. Durchgeführte Modellreaktionen belegen, dass freie Aminogruppen für Austauschreaktionen (zwischen NH2- und NH-Gruppe) notwendig sind. Andernfalls sind keine Reaktionen, z. B. zwischen zwei Harnstoffgruppen, nachzuweisen. Des Weiteren treten vermutlich auch Nebenreaktionen zwischen einem Dimermolekül und einem temporär vorliegenden Isocyanat unter Bildung einer Biuretverbindung auf. Durch den Zerfall der Biuretverbindung entsteht ein Isocyanat, das mit einem weiteren Dimermolekül zu einem linearen Trimer reagieren kann. Eine anschließende Reaktion mit CDI führt dann zur Bildung eines zyklischen Trimers. Mittels ESI-MS- und NMR-Untersuchungen konnte erstmals eine mögliche Struktur des zyklischen Tetramers cyH-Tetra angegeben werden. Bei cyH-Tetra können maximal zwei H-Brücken ausgebildet werden, wohingegen die Struktur des zyklischen Trimers durch drei intramolekulare H-Brücken stabilisiert wird. Das erklärt auch die thermodynamische Bevorzugung des zyklischen Trimers. Um nun aber gezielt offenkettige Harnstoffoligomere herzustellen und eine Zyklenbildung vollständig zu vermeiden, wurde die Reaktion kinetisch beeinflusst. Dazu wurde neben der Temperatur und der Stöchiometrie auch das Lösungsmittel variiert. Bei den Untersuchungen zeigte sich, dass nur bei niedrigen Temperaturen (T < 80 °C) die Zyklenbildung unterdrückt werden kann. Des Weiteren ist die Verwendung von polaren Lösungsmitteln (DMSO, THF, DMF und Aceton) notwendig, um die Edukte in ausreichender Menge zu lösen. Hinsichtlich der Stöchiometrie ist das Bild uneinheitlich. Als beste Methoden zur Darstellung des linH-Tetra erwiesen sich die Synthesen bei Raumtemperatur in THF und DMF. Ein weiterer Ansatz wurde mit MALDI-TOF-MS charakterisiert. Neben dem linearen Tetramer linH-Tetra treten noch längerkettige, vorwiegend geradzahlige Oligomere bis zum Dodecamer und zyklische Harnstoffe (bis zum Octamer) auf. Dabei ist die Intensität des linearen Tetramers am größten. Mittels dieser Methode wurde somit erstmals der Nachweis für das Auftreten von längerkettigen Harnstoffen erbracht. Alternative Synthesemethoden zur Darstellung von Harnstoffoligomeren mit Di-tert-butyldicarbonat und mit Hilfe von Templaten wurden ebenfalls in dieser Arbeit durchgeführt. In beiden Fällen konnten sowohl lineare als auch zyklische Harnstoffe hergestellt werden. Eine Verbesserung hinsichtlich der Ausbeute an linH-Tetra konnte mit diesen Synthesevarianten jedoch nicht erzielt werden, da die Anteile an längerkettigen Verbindungen geringer ausfielen als bei den Umsetzungen des Dimers mit CDI. Ein weiteres Ziel der Arbeit war die Synthese von substituierten zyklischen Harnstoff- und Amidintrimeren über Kondensationsreaktionen der entsprechenden 4-Alkyl-(Aryl)-oxy-2,6-diaminopyridine mit CDI in DMSO und mit Triethylorthoformiat in Substanz. Die benötigten substituierten Diamine wurden ausgehend von der Chelidamsäure über eine Veresterung/Veretherung und einen Curtius- bzw. Hofmann-Abbau hergestellt. TGA-Untersuchungen an diesen Trimeren zeigten, dass der Masseverlust bei den Proben mit einer Butyloxyseitenkette im Vergleich zu den anderen geringer ist. Das hängt damit zusammen, dass bei den Zyklen mit einer Hexyloxy-, Dodecyloxy- und Benzyloxyseitenkette neben dem Abbau der Seitenketten auch ein uncharakteristischer Zerfall der Hauptkette (Ringsystem) stattfindet. Hingegen werden die Butyloxyseitenketten nacheinander und nur unvollständig für T < 800 °C abgespalten; ein Abbau der Hauptkette ist nicht ersichtlich.
3

Zielgerichtete Synthese von helikalen und zyklischen Harnstoffoligomeren über die Beeinflussung der Kettenkonformation

Gube, Andrea 10 October 2012 (has links)
In der vorliegenden Arbeit sollten sowohl neue Polyharnstoffe als auch makrozyklische Harnstoffe bzw. Amidine auf Basis von 2,6-Diaminopyridin im Hinblick auf eine potentielle Anwendung in der supramolekulare Chemie hergestellt und charakterisiert werden. Ab initio-Berechnungen zufolge, sollten die linearen Harnstoffoligomere aufgrund von nichtkovalenten Wechselwirkungen ab dem Tetramer eine helikale Struktur aufweisen. In dieser Arbeit sollten die Harnstoffoligomere über einen stufenweisen Aufbau mit 2,6-Diaminopyridin (2,6-DAPy) bzw. dem Dimermolekül als Ausgangsstoff synthetisiert werden. Die Idee war unter Verwendung des Dimers im ersten Aufbauschritt das lineare Tetramer als Hauptprodukt zu erhalten und die Bildung von zyklischen Trimeren zu unterbinden. Bei der Darstellung der Harnstoffoligomere mit einem Überschuss an 2,6-DAPy und N,N'-Carbonyldiimidazol (CDI) bei 100 °C und bei Raumtemperatur in DMSO wurden Harnstoffgemische aus linearem Dimer (linH-Di), Trimer (linH-Tri), Tetramer (linH-Tetra) und zyklischem Trimer (cyH-Tri1) erhalten. Eine Trennung dieser durch Extraktion oder mittels Säulenchromatographie konnte aufgrund der strukturellen Ähnlichkeiten der Verbindungen nicht durchgeführt werden. Allerdings konnte durch Verwendung von THF das lineare Dimer bei Raumtemperatur rein erhalten werden. Eine Umsetzung des Dimers linH-Di mit CDI in DMSO bei 100 °C führte nicht zu den gewünschten offenkettigen Harnstoffen, sondern zu zyklischen Verbindungen. NMR-Untersuchungen zeigten, dass es sich hierbei um ein Gemisch aus zwei zyklischen Trimeren und einem zyklischen Tetramer handelt. Zwei Hauptgründe sind für die Bildung der Zyklen im Falle des Dimers als Ausgangsstoff verantwortlich: Erstens ist das Dimer in DMSO bei höheren Temperaturen instabil, was durch entsprechende Versuche bei 100 bis 140 °C gezeigt werden konnte. In den NMR-Spektren sind neben dem zyklischen Trimer cyH-Tri1 sowohl lineare Harnstoffe linH-Tri und linH-Tetra als auch das 2,6-Diaminopyridin nachzuweisen. Zweitens belegen sowohl TGA-Messungen als auch temperaturabhängige Synthesen (80 °C bis 180 °C in DMSO), dass das zyklische Trimer cyH-Tri1 thermodynamisch am stabilsten ist. Die unerwartete Bildung der zyklischen Trimere bei den Umsetzungen des linH-Di kann durch Austausch- und Nebenreaktionen erklärt werden. Durchgeführte Modellreaktionen belegen, dass freie Aminogruppen für Austauschreaktionen (zwischen NH2- und NH-Gruppe) notwendig sind. Andernfalls sind keine Reaktionen, z. B. zwischen zwei Harnstoffgruppen, nachzuweisen. Des Weiteren treten vermutlich auch Nebenreaktionen zwischen einem Dimermolekül und einem temporär vorliegenden Isocyanat unter Bildung einer Biuretverbindung auf. Durch den Zerfall der Biuretverbindung entsteht ein Isocyanat, das mit einem weiteren Dimermolekül zu einem linearen Trimer reagieren kann. Eine anschließende Reaktion mit CDI führt dann zur Bildung eines zyklischen Trimers. Mittels ESI-MS- und NMR-Untersuchungen konnte erstmals eine mögliche Struktur des zyklischen Tetramers cyH-Tetra angegeben werden. Bei cyH-Tetra können maximal zwei H-Brücken ausgebildet werden, wohingegen die Struktur des zyklischen Trimers durch drei intramolekulare H-Brücken stabilisiert wird. Das erklärt auch die thermodynamische Bevorzugung des zyklischen Trimers. Um nun aber gezielt offenkettige Harnstoffoligomere herzustellen und eine Zyklenbildung vollständig zu vermeiden, wurde die Reaktion kinetisch beeinflusst. Dazu wurde neben der Temperatur und der Stöchiometrie auch das Lösungsmittel variiert. Bei den Untersuchungen zeigte sich, dass nur bei niedrigen Temperaturen (T < 80 °C) die Zyklenbildung unterdrückt werden kann. Des Weiteren ist die Verwendung von polaren Lösungsmitteln (DMSO, THF, DMF und Aceton) notwendig, um die Edukte in ausreichender Menge zu lösen. Hinsichtlich der Stöchiometrie ist das Bild uneinheitlich. Als beste Methoden zur Darstellung des linH-Tetra erwiesen sich die Synthesen bei Raumtemperatur in THF und DMF. Ein weiterer Ansatz wurde mit MALDI-TOF-MS charakterisiert. Neben dem linearen Tetramer linH-Tetra treten noch längerkettige, vorwiegend geradzahlige Oligomere bis zum Dodecamer und zyklische Harnstoffe (bis zum Octamer) auf. Dabei ist die Intensität des linearen Tetramers am größten. Mittels dieser Methode wurde somit erstmals der Nachweis für das Auftreten von längerkettigen Harnstoffen erbracht. Alternative Synthesemethoden zur Darstellung von Harnstoffoligomeren mit Di-tert-butyldicarbonat und mit Hilfe von Templaten wurden ebenfalls in dieser Arbeit durchgeführt. In beiden Fällen konnten sowohl lineare als auch zyklische Harnstoffe hergestellt werden. Eine Verbesserung hinsichtlich der Ausbeute an linH-Tetra konnte mit diesen Synthesevarianten jedoch nicht erzielt werden, da die Anteile an längerkettigen Verbindungen geringer ausfielen als bei den Umsetzungen des Dimers mit CDI. Ein weiteres Ziel der Arbeit war die Synthese von substituierten zyklischen Harnstoff- und Amidintrimeren über Kondensationsreaktionen der entsprechenden 4-Alkyl-(Aryl)-oxy-2,6-diaminopyridine mit CDI in DMSO und mit Triethylorthoformiat in Substanz. Die benötigten substituierten Diamine wurden ausgehend von der Chelidamsäure über eine Veresterung/Veretherung und einen Curtius- bzw. Hofmann-Abbau hergestellt. TGA-Untersuchungen an diesen Trimeren zeigten, dass der Masseverlust bei den Proben mit einer Butyloxyseitenkette im Vergleich zu den anderen geringer ist. Das hängt damit zusammen, dass bei den Zyklen mit einer Hexyloxy-, Dodecyloxy- und Benzyloxyseitenkette neben dem Abbau der Seitenketten auch ein uncharakteristischer Zerfall der Hauptkette (Ringsystem) stattfindet. Hingegen werden die Butyloxyseitenketten nacheinander und nur unvollständig für T < 800 °C abgespalten; ein Abbau der Hauptkette ist nicht ersichtlich.:1 Einleitung 2 Zielstellung 3 Grundlagen 3.1 Foldamere 3.2 Formamidine 3.2.1 Synthese von Amidinen bzw. Formamidinen 3.2.2 Lineare und makrozyklische Formamidine 3.3 Harnstoffderivate 3.3.1 Synthese von Harnstoffderivaten 3.3.2 Lineare Harnstoffderivate 3.3.3 Makrozyklen 3.4 Substituierte 2,6-Diaminopyridine 3.4.1 Synthese über den Hofmann-Säureamidabbau 3.4.2 Synthese via Curtius-Reaktion 4 Ergebnisse und Diskussion 4.1 Synthese substituierter 2,6-Diaminopyridine 4.2 Synthese der Modellsubstanzen 4.3 Stufenweiser Aufbau von linearen Harnstoffderivaten des 2,6-Diaminopyridins 4.3.1 Umsetzung von 2,6-Diaminopyridin mit N,N’-Carbonyldiimidazol 4.3.2 Umsetzung des Dimers linH-Di mit N,N’-Carbonyldiimidazol 4.3.3 Lösungsmitteleffekt 4.3.4 Alternative Carbonylierungsreagenzien 4.4 Quantenmechanische Geometrieoptimierung 4.5 Umsetzung von 2,6-Diaminopyridin mit Di-tert-butyldicarbonat 4.6 Umsetzung substituierter 2,6-Diaminopyridine mit N,N’-Carbonyldiimidazol 4.7 Beeinflussung der Kettenkonformation linearer Harnstoffe durch Template 4.8 Zyklische Amidin- und Harnstoffderivate des 2,6-Diaminopyridins 4.8.1 Synthese von substituierten zyklischen Amidinen 4.8.2 Synthese von substituierten zyklischen Harnstoffen 4.9 Untersuchung der Assoziatbildung zwischen Harnstoff- und Amidinoligomeren 5 Zusammenfassung und Ausblick 6 Experimenteller Teil 6.1 Methoden der Charakterisierung 6.2 Verwendete Chemikalien und Reagenzien 6.3 Synthese der Modellsubstanzen 6.3.1 1,3-Bis(4-methyl-2-pyridyl)-harnstoff (linH-1) 6.3.2 N,N’-Bis(4-methyl-2-pyridyl)-formamidin (linF-1) 6.3.3 1,3-Bis(4,6-dimethyl-2-pyridyl)-harnstoff (linH-2) 6.3.4 N,N’-Bis(4,6-dimethyl-2-pyridyl)-formamidin (linF-2) 6.4 Synthese substituierter 2,6-Diaminopyridine 6.4.1 2,6-Diamino-4-pentyloxypyridin (C5-DAPy) 6.4.2 2,6-Diamino-4-butyloxypyridin (C4-DAPy) 6.4.3 2,6-Diamino-4-dodecyloxypyridin (C12-DAPy) 6.4.4 2,6-Diamino-4-hexyloxypyridin (C6-DAPy) 6.4.5 2,6-Diamino-4-benzyloxypyridin (Bn-DAPy) 6.5 Synthese linearer Harnstoffderivate des 2,6-Diaminopyridins 6.5.1 1,3-Bis(6-amino-2-pyridyl)-harnstoff (linH-Di) 6.5.2 Reaktionen des 2,6-Diaminopyridins mit N,N’-Carbonyldiimidazol 6.5.3 Reaktionen des Dimers (linH-Di) mit N,N’-Carbonyldiimidazol 6.5.4 Reaktionen mit (Boc)2O 6.5.5 Synthesen mit 4-Alkyloxy-2,6-diaminopyridinen und N,N’-Carbonyldiimidazol 6.6 Synthesen linearer Harnstoffe mit Hilfe von Templaten 6.7 Synthese zyklischer Harnstoffe und Formamidine 6.7.1 Cyclo-tri(4-alkyloxy-2,6-pyridylharnstoffe) 6.7.2 Cyclo-tri(4-alkyloxy-2,6-pyridylformamidine) 6.8 NMR-Untersuchungen zur Assoziatbildung zwischen Harnstoff- und Amidinderivaten 6.9 Modellreaktionen für Synthese des Dimers mit N,N’-Carbonyldiimidazol 6.9.1 Umsetzung von 1,3-Bis(4-methyl-2-pyridyl)-harnstoff (linH-1) mit 1,3-Bis-(4,6-dimethyl-2-pyridyl)-harnstoff (lin-H-2) 6.9.2 Umsetzung von 1,3-Bis(4-methyl-2-pyridyl)-harnstoff (linH-1) mit 2,6-Diaminopyridin 6.9.3 Temperaturversuche mit Dimer linH-Di (A6)6 7 Anhang 7.1 Massenspektren 7.1.1 EI-Massenspektren von A2-a-F1, A2-a-F2 und A2-a-F3 7.1.2 MALDI-TOF-Massenspektrum von A10-e-1-1 7.2 Wichtige Berechnungsformeln 7.2.1 Berechnung der molaren Anteile (mol-%) der Harnstoffderivate 7.2.2 Berechnung der Ausbeute an linearem Dimer bzw. Tetramer 8 Literaturverzeichnis 9 Danksagung

Page generated in 0.0688 seconds