• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Triazole-linked reduced amide isosteres: An approach for the fragment-based drug discovery of anti-Alzheimer's BACE1 inhibitors and NH-assisted Fürst-Plattner opening of cyclohexene oxides

Monceaux, Christopher Jon 14 January 2011 (has links)
In the scope of our BACE1 inhibitor project we used an originally designed microtiter plate-based screening to discover 4 triazole-linked reduced amide isosteres that showed modest (single digit micromolar) BACE1 inhibition. Our ligands were designed based on a very potent (single digit nanomolar) isopththalamide ligand from Merck. We supplanted one of the amide linkages in order to incorporate our triazole and saw a 1000-fold decrease in potency. We then enlisted Molsoft, L.L.C. to compare our ligand to Merck's in silico to account for this discrepancy. They found that the triazole linkage gives rise to a significantly different docking pose in the active site of the BACE1 enzyme, therefore diminishing its potency relative to the Merck ligand. The ability to control the regio- and stereochemical outcome of organic reactions is an ongoing interest and challenge to synthetic chemists. The pre-association of reacting partners through hydrogen bonding (H-bonding) can often to yield products with extremely high stereoselectivity. We were able to show that anilines, due to their enhanced acidity relative to amines, can serve as substrate directing moieties in the opening of cyclohexene oxides. We observed that by judicious choice of conditions we could control the regiochemical outcome of the reaction. These studies demonstrate that an intramolecular anilino-NH hydrogen bond donor can direct Fürst-Plattner epoxide opening. A unified mechanism for this phenomenon has been proposed in this work which consists of a novel mechanistic route we call "NH-directed Fürst-Plattner." We further studied the opening of cyclohexene oxides by incorporating amide and amide derivative substituents in both the allylic and homoallylic position relative to the epoxide moiety. Our attempts to control regioselectivity in the allylic systems were unsuccessful; however when the directing substituent was in the homoallylic position, we could demonstrate some degree of regioselectivity. An additional project that the author worked on for approximately one year during his graduate student tenure is not described within this work. In February of 2009 AstraZeneca, Mayo Clinic, and Virginia Tech Intellectual Properties Inc. concomitantly announced that AstraZeneca licensed a portfolio of preclinical Triple Reuptake Inhibitor (TRI) compounds for depression. The lead compound, PRC200, was discovered by a collaborative effort between the Carlier and Richelson (Mayo Clinic Jacksonville) research groups in 1998. The author was tasked to develop backup candidates of PRC200 in order to improve the pharmacokinetics of the lead compound. Due to confidentiality agreements, this work is not reported herein. / Ph. D.
2

Conformationally Constrained Nucleosides : Design, Synthesis, and Biochemical Evaluation of Modified Antisense Oligonucleotides

Varghese, Oommen P. January 2007 (has links)
This thesis is concerned with synthesis, structure and biochemical analysis of chemically modified oligonucleotides with potential therapeutic applications. The three types of chemical modifications described here are: (a) A North-East locked 1',2'-azetidine nucleoside (b) A North locked 2',4'-cyanomethylene bridged nucleoside and (c) A 2',4'-aza-ENA-T nucleoside. The synthesis of the 1',2'-azetidine fused nucleosides was described using two different approaches. A highly strained 2',4'-cyanomethylene locked nucleoside was synthesized but could not be converted to the phosphoramidite derivative due to instability during derivatization. The key cyclization step in the aza-ENA-T nucleoside synthesis gave rise to two separable diastereomers due to chirality at the exocyclic nitrogen. Conversion of diastereomer 55 to 56 occurred with a large free energy of activation (ΔG‡ = 23.4 kcal mol-1 at 298 K in pyridine-d5). Of the two isomers the equatorial NH product was more stable than the axial one due to reduced 1,3 diaxial interactions. As a result, all NH axial product was converted to the equatorial isomer during subsequent steps in the synthesis. NMR and ab initio experiments confirmed the North-East structure of the 1',2'-azetidine locked nucleoside and North conformation of aza-ENA-T locked nucleosides with a chair conformation of the piperidine ring. The amino modified nucleosides were incorporated into different positions of a 15mer oligonucleotide. The azetidine modified AONs did not form stable duplexes with complementary RNA (ΔTm ~-1 to -4 °C), but they performed better than previously synthesized isosequential 1',2'-oxetane modified oligonucleotides. The 2',4'-aza-ENA-T modified oligonucleotide, on the other hand, showed excellent target affinity with complementary RNA (ΔTm ~+4 °C). The azetidine and aza-ENA-T modified oligonucleotides showed significant stability in the presence of human serum and snake venom phosphodiesterase (3'-exonuclease) as compared to the unmodified native sequence. The singly modified 15mer oligonucleotides were also subjected to RNase H promoted digestion in order to evaluate their potential as effective antisense agents. The effective enzyme activity (kcat/Km) was found to be lower in the modified AONs due to reduced enzyme-substrate binding. However, the catalytic activity of RNase H with these modified-AON:RNA duplexes were higher than observed with the native duplex.

Page generated in 0.0494 seconds