• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 25
  • 15
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 29
  • 28
  • 28
  • 27
  • 26
  • 26
  • 24
  • 21
  • 20
  • 20
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculations of the electronic structures of the Si[001] thin film under <100>- and <110>-uniaxially strain

Lin, Jing-Ying 02 July 2007 (has links)
none
2

Combined Transport, Magnetization and Neutron Scattering Study of Correlated Iridates and Iron Pnictide Superconductors:

Dhital, Chetan January 2014 (has links)
Thesis advisor: Stephen Wilson / The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35±0.06 µB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRux)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of `Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an intricate interplay between residual AF correlations in the Jeff=1/2 state and metallic nanoscale hole regions. Our results lead us to propose an electronic/magnetic phase diagram for Sr3(Ir1-xRux)2O7 system showing how the system moves from Jeff=1/2 antiferromagnetic Mott insulator (Sr3Ir2O7) to paramagnetic Fermi liquid metal (Sr3Ru2O7). On the other hand, our neutron scattering measurements on Sr2IrO4 (n=1), a prototypical Jeff=1/2 Mott insulator, showed that the spins arranged antiferromagnetically in ab-plane with an ordered moment comparable to that of Sr3Ir2O7. The second part of my work is comprised of a neutron scattering-based study of the Ba(Fe1-xCox)2As2 system, a bilayer family of iron-based high temperature superconductors. Undoped, this system exhibits either simultaneous or nearly simultaneous magnetic and structural phase transitions from a high temperature paramagnetic tetragonal phase to low temperature orthorhombic antiferromagnetic phase. With the gradual suppression of these two temperatures, the superconducting phase appears with the highest TC obtained just beyond their complete suppression. It has been proposed that these coupled magnetostructural transitions are secondary manifestations which arise as a consequence of electronic nematic ordering that occurs at a temperature higher than either of them. My work is mainly focused on probing the spin behaviors coupling to this electronic nematic phase. I devised a small device to apply uniaxial pressure along an in-plane high symmetry axis and studied the magnetic and structural behavior in series of Ba(Fe1-xCox)2As2 compounds via neutron scattering in presence of uniaxial pressure. There is an upward thermal shift in the onset of structural and magnetic transition temperature caused by this uniaxial pressure which is surprisingly insensitive to cobalt concentration in the absolute scale. Furthermore, on the first order side of the phase diagram (below the tricritical point), the structural and magnetic transitions are decoupled with magnetic transition following structural distortion. This study suggests the importance of both spin-lattice and orbital-lattice interactions in these families of compounds. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
3

LABORATORY INVESTIGATION OF COAL PERMEABILITY UNDER REPLICATED IN SITU STRESS REGIME

Mitra, Abhijit 01 May 2010 (has links)
The cleat permeability of coal, a key to the success of any coalbed methane (CBM) recovery operation, is a dynamic parameter impacted by changes in effective stress and desorption-induced "matrix shrinkage". Most commonly-used theoretical models developed to predict CBM production as a result of permeability changes are based on the assumption that the deformation of a depleting coalbed is limited to the vertical direction; that is, the coal is under uniaxial strain conditions. However, most laboratory studies completed to estimate the changes in coal permeability have used triaxial state of stress, thus violating the underlying principles of the models. An experimental study was, therefore, undertaken to estimate the permeability variation of coal with a decrease in pore pressure under replicated in situ conditions where flow through coal, held under uniaxial strain conditions, was measured. Three samples were tested, one from the San Juan basin and the other two from the Illinois basin. The experimental results showed that, under uniaxial strain conditions, decreasing pore pressure resulted in a significant decrease in horizontal stress and increased permeability. The permeability increased non-linearly with decreasing pore pressure, with a small increase in the high pressure range, which increased progressively as the pressure dropped below a certain value. The experimental results were used to validate two theoretical models, namely the Palmer and Mansoori and Shi and Durucan, commonly used to project permeability variation with continued production. The models failed to provide good agreement with the experimental results below 300 psi, suggesting a shortcoming in the modeling philosophy. Although the measured permeability and stress changes were in qualitative agreement with the modeling results, both models predicted negative horizontal stresses at low pore pressures for one coal type, which was not supported by experimental results. The sorption-induced strain was also found to be significantly higher in the low pore pressure range, clearly suggesting a direct relationship between the sorption-induced strain and permeability. Moreover, the increase in permeability was different for the three coal types tested, with the largest increase for the core taken from maximum depth. Finally, a gradual increase in the logarithm of permeability was measured with reduction in horizontal stress. These results suggest a distinct advantage for deeper coals, which have generated limited interest to date, primarily due to the low initial permeability. Extending the deformation of a cylindrical rock sample loaded axially, a hypothesis was developed where coal undergoes maximum deformation at the middle of its length. Using this hypothesis, permeability variation with decreasing pore pressure was estimated and the established trend was used to modify one of the existing models. The agreement between laboratory results and the modified model showed definite promise for improving permeability projection capability.
4

A novel in vitro stretch device for simulating in vivo conditions

Akella, Arun 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Biological cells are constantly subjected to mechanical forces such as tension, compression and shear. The importance of these forces in mediating cell signals, maintenance of lineages, promoting embryonic cell differentiation and tissue engineering is only now coming into focus. It has been shown that stretch stimulus can influence growth, differentiation, as well as tissue strength and integrity. Most stretch systems built to understand more of these phenomena suffer from shortcomings, as accurately replicating the in vivo environment is quite challenging. Many of the devices currently available are very expensive as well as limited to a single application. The objective of this thesis is to design, manufacture, test, and validate a novel uniaxial cyclic cell stretch device that overcomes most of the major limitations of existing systems, and to experimentally demostrate that uniaxial cyclic stretch causes a shift towards in vivo characteristics of smooth muscle cells. The stretch mechanism is driven by a single servo motor which makes its operation simple and straight forward. Coolworks Lite, a proprietary software of the servo motor supplier, is used to control the motor and LabVIEW is used to obtain feedback from the sensors. Validation for the stretch machine was done by evaluating the performance of the device against engineering requirements. Methods were suggested to improve shortcomings that were encountered. Also, the machine's unique design allows its extension to a biaxial stretch unit while keeping the same driver platform, a concept for which has been discussed and illustrated.
5

A Study of Domain Walls in Uniaxial Magnetic Materials

Dimyan, Magid Y. 05 1900 (has links)
<p> An investigation of domain walls in some uniaxial magnetic materials is reported in this thesis. Firstly, a method for measuring the wall energy anisotropy in orthoferrites, which causes cylindrical magnetic (bubble) domains to be elliptical is described. In Sm0.55Tb0.45FeO3 a measured anisotropy energy of 1.7% of the wall-energy density at room temperature is responsible for eccentricities as large as 0.4 at average bubble radii equal to 85% of the bubble strip-domain transition radius. The relationship between material parameters and wall-energy anisotropy is discussed. The hypothesis that in orthoferrites walls parallel to the a axis are Bloch walls while walls parallel to the b axis are Néel walls is investigated by measuring the wall anisotropy as a function of the quality factor of the material by varying the temperature of the sample. The measurements seem to verify the predicted dependence of wall anisotropy on the quality factor and thus the hypothesis.</p> <p> A method for measuring the temperature dependence of the wall-energy density in orthoferrites and the saturation magnetization in garnets is described. The advantage of the method is that it uses a single isolated bubble domain without the need to destroy the bubble in order to obtain the measurements. This method led to the derivation of the temperature sensitivities of bubble domains in orthoferrites and garnets in terms of the material parameters. Optimum plate thicknesses to minimize the variation of bubble diameter with temperature are considered. Also, the condition for zero temperature sensitivity of bubbles in some uniaxial materials is derived in terms of the material parameters.</p> <p> Finally, a study of the current requirement to cut a bubble domain from a strip domain or another bubble in uniaxial plates is reported in this thesis.</p> / Thesis / Doctor of Philosophy (PhD)
6

X-RAY STUDY OF MESOMORPHISM OF BENT-CORE AND CHROMONIC MESOGENS

Joshi, Leela Pradhan 17 April 2009 (has links)
No description available.
7

Wave reflection from a lossy uniaxial media

Azam, Md. Ali January 1995 (has links)
No description available.
8

Electromagnetic wave propagation in anisotropic uniaxial slab waveguide

Iskandarani, Saad S. January 1989 (has links)
No description available.
9

Wave propagation from isotropic medium into magnetically uniaxial medium

Tay, Henry January 1988 (has links)
No description available.
10

Propriedades físicas de arenitos afetados por bandas de deformação nos diferentes elementos arquiteturais de uma zona de falha.

PONTES, Cayo César Cortez. 17 April 2018 (has links)
Submitted by Jesiel Ferreira Gomes (jesielgomes@ufcg.edu.br) on 2018-04-17T20:50:16Z No. of bitstreams: 1 CAYO CÉSAR CORTEZ PONTES – DISSERTAÇÃO (PPGEPM) 2017.pdf: 8158516 bytes, checksum: db5e0ee4565586d1704ae50ddc242d41 (MD5) / Made available in DSpace on 2018-04-17T20:50:16Z (GMT). No. of bitstreams: 1 CAYO CÉSAR CORTEZ PONTES – DISSERTAÇÃO (PPGEPM) 2017.pdf: 8158516 bytes, checksum: db5e0ee4565586d1704ae50ddc242d41 (MD5) Previous issue date: 2017-02-23 / Bandas de deformação são estruturas rúpteis que ocorrem em arenitos porosos e podem alterar as propriedades físicas, comportamento mecânico e hidráulico das rochas, resultando na compartimentação de reservatórios. O objetivo deste trabalho foi compreender a variação das propriedades de Resistência à Compressão Uniaxial (UCS), porosidade, Razão de Poisson, Módulos de Young e incompressibilidade nos diferentes elementos arquiteturais da zona de falha: protólito não deformado, zona de dano e núcleo da falha. Para isso realizamos perfis para medição de parâmetros estruturais e geomecânicos com auxílio do esclerômetro (Schmidt Hammer), análises laboratoriais de porosidade, tanto por meio digital em seção delgada como por permoporosímetro a gás, cálculos dos módulos de Young, incompressibilidade e Razão de Poisson. Os resultados indicam que no afloramento correspondente ao núcleo da falha os valores de UCS foram até três vezes maiores que aqueles na zona de dano e quatro vezes maiores que a zona não deformada. A porosidade apresenta decréscimo médio de 10% na zona de dano e até 75% no núcleo da falha. A porosidade estimada por medições em permoporosímetro a gás, módulos de Young, incompressibilidade e Razão de Poisson foram calculados no núcleo da falha. Nesse elemento arquitetural as zonas com bandas possuem resistência até duas vezes maior que a zona sem banda, com efeito no módulo de Young e no módulo de incompressibilidade, porém ambas com deformação ocorrida em caráter rúptil, evidenciado pelo atributo Razão de Poisson. Concluímos assim que bandas de deformação afetam diretamente as propriedades físicas de arenito em diferentes níveis de intensidade. A ocorrência de tais heterogeneidades podem ter impactos importantes na produção já que impõe anisotropias aos reservatórios. / Deformation bands are brittle structures that occur in porous sandstones and may change the physical properties, geomechanical and hydraulic behavior of the rock, leading to the compartmentation of reservoirs. The objective of this research was to understand the variation of the properties of uniaxial compressive strength (UCS), porosity, Poisson’s ratio, Young’s and incompressibility’s modulus in different architectural elements of fault zone: protolith, damage zone and fault core. For this we extracted profiles for the measurement of structural and geomechanics with aid of Schmidt hammer, laboratorial analysis of porosity, both thin section digital means and by gas permoporosimeter, and Young’s, incompressibility and Poisson’s ratio calculations. The results indicate that in outcroup corresponding to the nucleus of fault the UCS values were up to three times higher than those in the damage zone and four times higher than the protolith. The porosity shows an average decrease of 10% in the damage zone and up to 75% in the fault core. Porosity by gas, Young’s and incompressibility modulus and Poisson’s ratios was calculated in core fault. In this architectural element with bands have resistance up to twice times than zone without bands, marked in the Young’s mo dulus as well as the incompressibility’s modulus, however both with deformation occurring in a brittle character, evidenced by Poisson’s ratio. We conclude that deformation bands directly affect the physics properties of sandstones in different levels of intensity. The occurrence of such heterogeneities may have important impacts on the production since it imposes anisotropies to the reservoirs.

Page generated in 0.0284 seconds