• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculations of the electronic structures of the Si[001] thin film under <100>- and <110>-uniaxially strain

Lin, Jing-Ying 02 July 2007 (has links)
none
2

LABORATORY INVESTIGATION OF COAL PERMEABILITY UNDER REPLICATED IN SITU STRESS REGIME

Mitra, Abhijit 01 May 2010 (has links)
The cleat permeability of coal, a key to the success of any coalbed methane (CBM) recovery operation, is a dynamic parameter impacted by changes in effective stress and desorption-induced "matrix shrinkage". Most commonly-used theoretical models developed to predict CBM production as a result of permeability changes are based on the assumption that the deformation of a depleting coalbed is limited to the vertical direction; that is, the coal is under uniaxial strain conditions. However, most laboratory studies completed to estimate the changes in coal permeability have used triaxial state of stress, thus violating the underlying principles of the models. An experimental study was, therefore, undertaken to estimate the permeability variation of coal with a decrease in pore pressure under replicated in situ conditions where flow through coal, held under uniaxial strain conditions, was measured. Three samples were tested, one from the San Juan basin and the other two from the Illinois basin. The experimental results showed that, under uniaxial strain conditions, decreasing pore pressure resulted in a significant decrease in horizontal stress and increased permeability. The permeability increased non-linearly with decreasing pore pressure, with a small increase in the high pressure range, which increased progressively as the pressure dropped below a certain value. The experimental results were used to validate two theoretical models, namely the Palmer and Mansoori and Shi and Durucan, commonly used to project permeability variation with continued production. The models failed to provide good agreement with the experimental results below 300 psi, suggesting a shortcoming in the modeling philosophy. Although the measured permeability and stress changes were in qualitative agreement with the modeling results, both models predicted negative horizontal stresses at low pore pressures for one coal type, which was not supported by experimental results. The sorption-induced strain was also found to be significantly higher in the low pore pressure range, clearly suggesting a direct relationship between the sorption-induced strain and permeability. Moreover, the increase in permeability was different for the three coal types tested, with the largest increase for the core taken from maximum depth. Finally, a gradual increase in the logarithm of permeability was measured with reduction in horizontal stress. These results suggest a distinct advantage for deeper coals, which have generated limited interest to date, primarily due to the low initial permeability. Extending the deformation of a cylindrical rock sample loaded axially, a hypothesis was developed where coal undergoes maximum deformation at the middle of its length. Using this hypothesis, permeability variation with decreasing pore pressure was estimated and the established trend was used to modify one of the existing models. The agreement between laboratory results and the modified model showed definite promise for improving permeability projection capability.
3

Uniaxial-Strain Control of Nematic Superconductivity in SrxBi2Se3 / 一軸ひずみによるSrxBi2Se3のネマティック超伝導の制御

Ivan, Kostylev 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22112号 / 理博第4539号 / 新制||理||1652(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 松田 祐司, 教授 石田 憲二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
4

Manipulation of time reversal symmetry breaking superconductivity in Sr₂RuO₄ by uniaxial pressure

Ghosh, Shreenanda 30 September 2021 (has links)
Unconventional superconductivity continues to be one of the most striking chapters in condensed matter physics, by posing challenges to our theoretical understanding of its origin. During the last three decades a large number of unconventional superconductors with exotic properties have been found arising great interest, such as the heavy fermion systems, high Tc cuprates as well as the Iron based superconductors etc. Sr2RuO4, the material I have studied, can be considered as an exemplary case in this regard. In spite of more than two decades of comprehensive research, Sr2RuO4 remains one of the most compelling superconductors till date. Various experimental results give evidence that the superconductivity of Sr2RuO4 is chiral: including measurements of the Kerr effect, sound velocities, critical currents across junctions, and muon spin relaxation(μSR), the experimental technique at the heart of this dissertation. Recent NMR Knight shift measurements suggests that the pairing is most likely spin-singlet, and in the tetragonal lattice of Sr2RuO4, the combination of singlet pairing and chirality compels consideration of an seemingly unlikely order parameter: dxz ± idyz. It is unlikely because it comes along with a horizontal line node at kz = 0, whereas Sr2RuO4 has a very low c-axis conductivity. And that makes the question whether or not the superconductivity of Sr2RuO4 is chiral, of great importance. This calls for an unique scenario in regard to our understanding of unconventional superconductivity, as the presence of chirality in Sr2RuO4 might imply a new form of pairing, which is yet to be firmly determined. Chiral superconductors break time reversal symmetry by definition, and in general time-reversal-symmetry breaking (TRSB) superconductivity indicates complex two component order parameters. Probing Sr2RuO4 under uniaxial pressure offers the possibility to lift the degeneracy between such components. However, despite strenuous efforts, a splitting of the superconducting and TRSB transitions under uniaxial pressure has not been observed so far. In this thesis, I report muon spin relaxation measurements on Sr2RuO4 samples, placed under uniaxial stress. The relatively large sample size suitable for μSR demanded for a customized uniaxial pressure cell in order to perform our experiments. It has been a technically challenging task to have a fully fledged uniaxial pressure cell with stringent requirements, that is suitable for time restricted facility experiments like μSR. The technical advancement has been documented thoroughly in this thesis. Using the dedicated uniaxial pressure cell, we observed the much awaited stress induced splitting between the onset temperatures of superconductivity and time reversal symmetry breaking, consistent with the qualitative expectations for a chiral order parameter in Sr2RuO4. In addition to that, we report the appearance of a bulk magnetic order in Sr2RuO4 under higher uniaxial stress for the first time, above the critical pressure at which a Lifshitz transition is known to occur. The signal in the state appearing at high stress qualitatively differs from that in the TRSB state in unstressed Sr2RuO4, which provides evidence that the enhanced muon spin relaxation at lower stresses is not a consequence of conventional magnetism. As a whole, our results strongly support the idea of two-component superconducting order parameter in Sr2RuO4, that breaks time-reversal symmetry.
5

The mechanochemistry in heterogeneous reactive powder mixtures under high-strain-rate loading and shock compression

Gonzales, Manny 07 January 2016 (has links)
This work presents a systematic study of the mechanochemical processes leading to chemical reactions occurring due to effects of high-strain-rate deformation associated with uniaxial strain and uniaxial stress impact loading in highly heterogeneous metal powder-based reactive materials, specifically compacted mixtures of Ti/Al/B powders. This system was selected because of the large exothermic heat of reaction in the Ti+2B reaction, which can support the subsequent Al-combustion reaction. The unique deformation state achievable by such high-pressure loading methods can drive chemical reactions, mediated by microstructure-dependent meso-scale phenomena. Design of the next generation of multifunctional energetic structural materials (MESMs) consisting of metal-metal mixtures requires an understanding of the mechanochemical processes leading to chemical reactions under dynamic loading to properly engineer the materials. The highly heterogeneous and hierarchical microstructures inherent in compacted powder mixtures further complicate understanding of the mechanochemical origins of shock-induced reaction events due to the disparate length and time scales involved. A two-pronged approach is taken where impact experiments in both the uniaxial stress (rod-on-anvil Taylor impact experiments) and uniaxial strain (instrumented parallel-plate gas-gun experiments) load configurations are performed in conjunction with highly-resolved microstructure-based simulations replicating the experimental setup. The simulations capture the bulk response of the powder to the loading, and provide a look at the meso-scale deformation features observed under conditions of uniaxial stress or strain. Experiments under uniaxial stress loading reveal an optimal stoichiometry for Ti+2B mixtures containing up to 50% Al by volume, based on a reduced impact velocity threshold required for impact-induced reaction initiation as evidenced by observation of light emission. Uniaxial strain experiments on the Ti+2B binary mixture show possible expanded states in the powder at pressures greater than 6 GPa, consistent with the Ballotechnic hypothesis for shock-induced chemical reactions. Rise-time dispersive signatures are consistently observed under uniaxial strain loading, indicating complex compaction phenomena, which are reproducible by the meso-scale simulations. The simulations show the prevalence of shear banding and particle agglomeration in the uniaxial stress case, providing a possible rationale for the lower observed reaction threshold. Bulk shock response is captured by the uniaxial strain meso-scale simulations and is compared with PVDF stress gauge and VISAR traces to validate the simulation scheme. The simulations also reveal the meso-mechanical origins of the wave dispersion experimentally recorded by PVDF stress gauges.

Page generated in 0.0637 seconds