Spelling suggestions: "subject:"dispersion aquation"" "subject:"dispersion cquation""
1 |
Wave reflection from a lossy uniaxial mediaAzam, Md. Ali January 1995 (has links)
No description available.
|
2 |
Stream Classification and Solubility of the Dispersion Equation for Piecewise Constant VorticitySöderholm, Marianne January 2018 (has links)
This thesis concerns the water wave problem corresponding to a piecewise constant vorticity function. There are several results connected to this field. In [1] the authors prove the existence of small-amplitude capillary-gravity water waves in the setting of unidirectional waves, and present an explicit form of the dispersion equation in the case when the vorticity function has two jumps. A two-layer model with constant but different vorticities is studied in [2], while in [3], an analysis of the dispersion equation for a three-layer model is given. In this thesis we first classify all stream solutions to the problem specified above, and then use our classification to prove and analyze solubility of the dispersion equation for a vorticity function with one jump. We do not require streams to be unidirectional (that is, we allow underlying counter-currents and internal stagnation).
|
3 |
Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion EquationsAldoghaither, Abeer 12 November 2015 (has links)
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods.
Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem.
In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium.
Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE,
which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem.
This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE.
In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final observations. An analytic solution for the non-homogeneous case is derived and existence and uniqueness of the solution are established. In addition, the uniqueness and stability of the inverse problem is studied. Moreover, the modulating functions-based method is used to solve the problem and it is compared to a standard Tikhono-based optimization technique.
|
4 |
Development, Verification, and Evaluation of a Solute Transport Model in Surface IrrigationPerea-Estrada, Hugo January 2005 (has links)
A cross-section averaged Advection-Dispersion equation (ADE) model was developed to simulate the transport of fertilizer in furrow irrigation. The advection and dispersion processes were solved separately by implementing the method of the characteristics with cubic spline interpolation (and natural boundary condition) and weighted finite difference scheme respectively. A zero-flux boundary condition during advance and an advective gradient at the downstream end of an open furrow were established. Local pseudo-steady state was assumed in order to apply Fischer's longitudinal dispersion equation under non-uniform and unsteady furrow flow conditions. Also, several parameters were used to evaluate the ADE model and fertigation performance.A field tracer experiment in two types of downstream-end furrow and two treatments was conducted and described. Infiltration and roughness parameters were calibrated by implementing a volume balance approach. The calibrated parameters were used as input data to run the surface irrigation model (SRFR). The roughness coefficient was 0.045 for wheel and 0.055 for non-wheel furrow treatment for bare soil. The root mean square error (RMSE) comparing the computed and observed infiltrated volume was in the range of 0.09-0.38 m3. The close match between simulated and observed data indicates an acceptable calibration. Pulses of fertilizer injected at the head end of four furrows each having unique management characteristics were simulated satisfactorily during the entire duration of the irrigation event. The constant value of the longitudinal dispersion coefficient was 1 m2 min-1 and yielded an acceptable space-time evolution of the pulses of tracer injected. Similar results for the dispersion coefficient were obtained with Fischer's equation in non-uniform and unsteady stream flow conditions in the furrow. An evaluation of several fertigation strategies for furrow systems indicated that fertigation by pulses could help reduce leaching and runoff losses in surface irrigation systems.
|
5 |
CAD-unterstützte Bestimmung des effektiven Dispergiervolumens beim Ultraschalldispergieren / CAD-assisted determination of the effective dispersion volume for dispersing with sonicationGerlach, Carina, Berndt, Karsten, Kanoun, Olfa, Berger, Maik 22 July 2016 (has links) (PDF)
Für nanoskalige Füllpartikel, die stark zum Agglomerieren tendieren, ist das Ultraschalldispergieren mittels Sonotrode eine geeignete Methode, um Agglomerate hinreichend gut zu entbündeln. Um dabei die optimalen Ultraschallparameter ermitteln zu können, ist es nötig, das effektive Dispergiervolumen, in welchem die Agglomerate durch Kavitation aufgebrochen werden, zu kennen. Die hier vorgestellte CAD-basierte Methode zur Berechnung des effektiven Dispergiervolumens ist dabei deutlich weniger zeitintensiv als die bisher üblicherweise verwendete analytische Methode.
|
6 |
Zlomkové diferenciální rovnice a jejich aplikace / Fractional differential equations and their applicationsKisela, Tomáš January 2008 (has links)
Zlomkový kalkulus je matematická disciplína zabývající se vlastnostmi derivací a integrálů neceločíselných řádů (nazývaných zlomkové derivace a integrály, zkráceně diferintegrály) a metodami řešení diferenciálních rovnic obsahujících zlomkové derivace neznámé funkce (tzv. zlomkovými diferenciálními rovnicemi). V této práci představujeme standardní přístupy k definicím zlomkového kalkulu a důkazy některých základních vlastností diferintegrálů. Dále uvádíme krátký přehled metod řešení některých lineárních zlomkových diferenciálních rovnic a vymezujeme hranice jejich použitelnosti. Na závěr si všímáme některých fyzikálních aplikací zlomkového kalkulu.
|
7 |
CAD-unterstützte Bestimmung des effektiven Dispergiervolumens beim UltraschalldispergierenGerlach, Carina, Berndt, Karsten, Kanoun, Olfa, Berger, Maik 22 July 2016 (has links)
Für nanoskalige Füllpartikel, die stark zum Agglomerieren tendieren, ist das Ultraschalldispergieren mittels Sonotrode eine geeignete Methode, um Agglomerate hinreichend gut zu entbündeln. Um dabei die optimalen Ultraschallparameter ermitteln zu können, ist es nötig, das effektive Dispergiervolumen, in welchem die Agglomerate durch Kavitation aufgebrochen werden, zu kennen. Die hier vorgestellte CAD-basierte Methode zur Berechnung des effektiven Dispergiervolumens ist dabei deutlich weniger zeitintensiv als die bisher üblicherweise verwendete analytische Methode.
|
8 |
Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo / Simulation of water flow and solute transport in the unsaturated zone of the soil by adaptative finite element methodPizarro, Maria de Lourdes Pimentel 02 October 2009 (has links)
Devido aos riscos de contaminação dos recursos naturais solo e água, ao alto custo, ao tempo e ao esforço humano nas investigações de campo, os modelos matemáticos, aliados às técnicas numéricas e aos avanços computacionais, constituem uma ferramenta importante na previsão do deslocamento de solutos, contribuindo assim, para o controle de alterações ambientais. No Brasil, a modelação de fluxo e transporte de solutos na zona não-saturada é voltada, quase que exclusivamente, aos problemas relacionados às atividades agrícolas. Entretanto, tão importante quanto a problemática dos produtos químicos nas atividades agrícolas é a questão de poluição e contaminação do solo e da água por chorume, gerado pelos resíduos sólidos domiciliares. Neste trabalho, é desenvolvido e validado um modelo computacional unidimensional para simulação de fluxo e transporte de solutos na zona não-saturada do solo. O modelo matemático é dado pela equação diferencial parcial não-linear de Richards, que rege o movimento de água no solo, e a equação diferencial parcial linear de advecção-dispersão, do transporte de solutos, acompanhadas das condições iniciais e de contorno. A equação de Richards é dada em função do potencial matricial da água e a equação de transporte de solutos estima a evolução temporal da concentração de solutos no perfil do solo. Devido à dificuldade de se obter soluções analíticas destas equações, são resolvidas numericamente pelo método de elementos finitos. As referidas equações são resolvidas utilizando-se malhas uniformes inicialmente. Com a finalidade de obter simulações mais eficientes, a um custo computacional reduzido, é empregada a adaptatividade com refinamento h na malha de elementos finitos. A função interpolação polinomial utilizada é de grau 2 ou maior que garante a conservação de massa. Na equação de Richards, a derivada temporal é aproximada por um quociente de diferença finita e é aplicado o esquema de Euler explícito e na equação de advecção-dispersão, é aproximada por um quociente de diferença finita, aplicando-se o esquema de Euler implícito, devido à linearidade da equação. O sistema operacional é o Linux Ubuntu 32 bits, o ambiente de programação é o PZ, escrito em linguagem de programação C++. Na validação do modelo, utilizam-se dados disponíveis na literatura. Os resultados são comparados, utilizando-se malhas uniformes e malhas adaptativas com refinamento h. Usando-se as malhas uniformes para o problema de Richards e de transporte de potássio, o tempo de execução é de 22 minutos e a memória utilizada de 6164 Kb. Com as malhas adaptadas, o tempo de execução é de 3 minutos e 27 segundos, consumindo 5876 Kb de memória. Houve, portanto, uma redução de 84,32% no tempo de execução, usando-se malhas adaptativas. A utilização da função interpolação polinomial de grau 2 ou maior e o refinamento h, permitem uma boa concordância do modelo na comparação com soluções disponíveis na literatura. / Due to the risks of contamination of soil and water resources, the high cost, time and human effort in the field investigations, the mathematical models, combined with numerical techniques and computational advances, are important tools in forecasting the movement of solutes thereby contributing to the control of environmental alteration. In Brazil, modeling of flow and solute transport in the unsaturated zone is focused, almost exclusively, on problems related to agricultural activities. However, as important as the problematical of chemicals products in agricultural activities is the issue of pollution and contamination of soil and water by leachate, generated by municipal solid wastes. In this work, an one-dimensional computational model for simulation of flow and solute transport in the unsaturated soil has been developed and validated. The mathematical model is given by the Richards\'s non-linear partial differential equation, which determines the movement of water in the soil, and the advection-dispersion linear partial differential equation, of the solute transport, together with initial and boundary conditions. The Richards equation is a function of the water pressure head and the solute transport equation estimate the temporal evolution of the solutes concentration in the soil profile. Due to the difficulty of obtaining analytical solutions of these equations, they are solved numerically using the finite element method. The governing equations are solved using initially a uniform mesh. In order to obtain more efficient simulations with low computational cost, adaptativity with h refinement on the finite element mesh is implemented. The interpolation function is of degree two or higher, assuring mass conservation. In Richards\' equation, the temporal derivative is approximated by Euler explicit finite difference. For the advection-dispersion equation, due to the linearity of the equation, an implicit finite difference scheme is used. The code is written in the programming language C++ based on the programming environment PZ using operating system Linux Ubuntu 32 bit. Model results are validated in comparison with data available in the literature. The results are evaluated using uniform meshes and with h refinement adaptive mesh. Using the uniform meshes for the problem of Richards and transport of potassium, the running time is 22 minutes and 6164 Kb of memory is used. With the adapted meshes, the execution time is 3 minutes and 27 seconds, consuming 5,876 Kb of memory. Therefore there was a reduction of 84.32% in execution time, using adaptive meshes. The interpolation function with degree two or higher and the h refinement, with reduction of the computation time, showed a good agreement in comparison with the literature.
|
9 |
Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo / Simulation of water flow and solute transport in the unsaturated zone of the soil by adaptative finite element methodMaria de Lourdes Pimentel Pizarro 02 October 2009 (has links)
Devido aos riscos de contaminação dos recursos naturais solo e água, ao alto custo, ao tempo e ao esforço humano nas investigações de campo, os modelos matemáticos, aliados às técnicas numéricas e aos avanços computacionais, constituem uma ferramenta importante na previsão do deslocamento de solutos, contribuindo assim, para o controle de alterações ambientais. No Brasil, a modelação de fluxo e transporte de solutos na zona não-saturada é voltada, quase que exclusivamente, aos problemas relacionados às atividades agrícolas. Entretanto, tão importante quanto a problemática dos produtos químicos nas atividades agrícolas é a questão de poluição e contaminação do solo e da água por chorume, gerado pelos resíduos sólidos domiciliares. Neste trabalho, é desenvolvido e validado um modelo computacional unidimensional para simulação de fluxo e transporte de solutos na zona não-saturada do solo. O modelo matemático é dado pela equação diferencial parcial não-linear de Richards, que rege o movimento de água no solo, e a equação diferencial parcial linear de advecção-dispersão, do transporte de solutos, acompanhadas das condições iniciais e de contorno. A equação de Richards é dada em função do potencial matricial da água e a equação de transporte de solutos estima a evolução temporal da concentração de solutos no perfil do solo. Devido à dificuldade de se obter soluções analíticas destas equações, são resolvidas numericamente pelo método de elementos finitos. As referidas equações são resolvidas utilizando-se malhas uniformes inicialmente. Com a finalidade de obter simulações mais eficientes, a um custo computacional reduzido, é empregada a adaptatividade com refinamento h na malha de elementos finitos. A função interpolação polinomial utilizada é de grau 2 ou maior que garante a conservação de massa. Na equação de Richards, a derivada temporal é aproximada por um quociente de diferença finita e é aplicado o esquema de Euler explícito e na equação de advecção-dispersão, é aproximada por um quociente de diferença finita, aplicando-se o esquema de Euler implícito, devido à linearidade da equação. O sistema operacional é o Linux Ubuntu 32 bits, o ambiente de programação é o PZ, escrito em linguagem de programação C++. Na validação do modelo, utilizam-se dados disponíveis na literatura. Os resultados são comparados, utilizando-se malhas uniformes e malhas adaptativas com refinamento h. Usando-se as malhas uniformes para o problema de Richards e de transporte de potássio, o tempo de execução é de 22 minutos e a memória utilizada de 6164 Kb. Com as malhas adaptadas, o tempo de execução é de 3 minutos e 27 segundos, consumindo 5876 Kb de memória. Houve, portanto, uma redução de 84,32% no tempo de execução, usando-se malhas adaptativas. A utilização da função interpolação polinomial de grau 2 ou maior e o refinamento h, permitem uma boa concordância do modelo na comparação com soluções disponíveis na literatura. / Due to the risks of contamination of soil and water resources, the high cost, time and human effort in the field investigations, the mathematical models, combined with numerical techniques and computational advances, are important tools in forecasting the movement of solutes thereby contributing to the control of environmental alteration. In Brazil, modeling of flow and solute transport in the unsaturated zone is focused, almost exclusively, on problems related to agricultural activities. However, as important as the problematical of chemicals products in agricultural activities is the issue of pollution and contamination of soil and water by leachate, generated by municipal solid wastes. In this work, an one-dimensional computational model for simulation of flow and solute transport in the unsaturated soil has been developed and validated. The mathematical model is given by the Richards\'s non-linear partial differential equation, which determines the movement of water in the soil, and the advection-dispersion linear partial differential equation, of the solute transport, together with initial and boundary conditions. The Richards equation is a function of the water pressure head and the solute transport equation estimate the temporal evolution of the solutes concentration in the soil profile. Due to the difficulty of obtaining analytical solutions of these equations, they are solved numerically using the finite element method. The governing equations are solved using initially a uniform mesh. In order to obtain more efficient simulations with low computational cost, adaptativity with h refinement on the finite element mesh is implemented. The interpolation function is of degree two or higher, assuring mass conservation. In Richards\' equation, the temporal derivative is approximated by Euler explicit finite difference. For the advection-dispersion equation, due to the linearity of the equation, an implicit finite difference scheme is used. The code is written in the programming language C++ based on the programming environment PZ using operating system Linux Ubuntu 32 bit. Model results are validated in comparison with data available in the literature. The results are evaluated using uniform meshes and with h refinement adaptive mesh. Using the uniform meshes for the problem of Richards and transport of potassium, the running time is 22 minutes and 6164 Kb of memory is used. With the adapted meshes, the execution time is 3 minutes and 27 seconds, consuming 5,876 Kb of memory. Therefore there was a reduction of 84.32% in execution time, using adaptive meshes. The interpolation function with degree two or higher and the h refinement, with reduction of the computation time, showed a good agreement in comparison with the literature.
|
Page generated in 0.1122 seconds