• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations

Aldoghaither, Abeer 12 November 2015 (has links)
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final observations. An analytic solution for the non-homogeneous case is derived and existence and uniqueness of the solution are established. In addition, the uniqueness and stability of the inverse problem is studied. Moreover, the modulating functions-based method is used to solve the problem and it is compared to a standard Tikhono-based optimization technique.
2

Zlomkové diferenciální rovnice a jejich aplikace / Fractional differential equations and their applications

Kisela, Tomáš January 2008 (has links)
Zlomkový kalkulus je matematická disciplína zabývající se vlastnostmi derivací a integrálů neceločíselných řádů (nazývaných zlomkové derivace a integrály, zkráceně diferintegrály) a metodami řešení diferenciálních rovnic obsahujících zlomkové derivace neznámé funkce (tzv. zlomkovými diferenciálními rovnicemi). V této práci představujeme standardní přístupy k definicím zlomkového kalkulu a důkazy některých základních vlastností diferintegrálů. Dále uvádíme krátký přehled metod řešení některých lineárních zlomkových diferenciálních rovnic a vymezujeme hranice jejich použitelnosti. Na závěr si všímáme některých fyzikálních aplikací zlomkového kalkulu.

Page generated in 0.423 seconds