• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Ionization constants of the second hydrogen ion of dibasic acids ...

Chandler, Elbert Edwin. January 1908 (has links)
Thesis (Ph. D.)--University of Chicago. / Also available on the Internet.
2

Treatment of TCE - Contaminated Groundwater using Potassium Permanganate Oxidation

Huang, Kun-der 22 August 2004 (has links)
In this study, potassium permanganate was used as the oxidant to remediate TCE¡Vcontaminated groundwater. The objectives of this bench-scale oxidation study include the following: (1) evaluate the overall TCE oxidation rate with the presence of KMnO4, (2) assess the consumption rate of KMnO4, (3) evaluate the effect of the oxidation by-product, manganese dioxide (MnO2), on the TCE oxidation rate. The control factors in this study include (1) four different molar ratios of KMnO4 to TCE [designated as P, (KMnO4/TCE) = 2, 5, 10, and 20]; (2) four different TCE concentration (0.5, 5, 20, and 100 ppm); (3) three different initial pH values (2.1, 6.3, and 12.5); (4) three different oscillator mix rate (0, 50, and 200 rpm); (5) four different molar ratios of dibasic sodium phosphate (Na2HPO4) to Mn2+ [designated as D, (Na2HPO4/Mn2+) = 0, 50, 100, and 300D], and (6) two different medium solutions [deionized (DI) water and groundwater]. Moreover, the effects of D values on TCE oxidation rate and KMnO4 consumption rate were also evaluated. Experimental results indicate that a second-order reaction model could be applied to express the oxidation reaction of TCE by KMnO4, and the calculated rate constant equals 0.8 M-1s-1. Results also show that the higher the P value, the higher the TCE oxidation rate. Moreover, TCE oxidation rate was not affected under low pH conditions (pH = 2.10 and 6.3). However, TCE oxidation rate dropped under high pH condition (pH 12.5) due to the transformation of KMnO4 to manganese dioxide. The following three pathways would cause the production of manganese dioxide: (1) direct oxidation of TCE by KMnO4, (2) production of Mn2+ after the oxidation of TCE by KMnO4, and Mn2+ was further oxidized by KMnO4 to form manganese dioxide, and (3) transformation of KMnO4 to manganese dioxide under high pH condition. Results also show that more manganese dioxide was produced while groundwater was used as the medium solution. Results show that the produced manganese dioxide was 47.2% - 81.5% less with the addition of dibasic sodium phosphate. Moreover, the variations in D values would not affect the TCE oxidation rate. However, the increase in D value would decrease the consumption of KMnO4. Results also reveal that significant inhibition of manganese dioxide production was observed under low pH condition. Furthermore, no TCE oxidation byproducts were detected after the oxidation reaction. Key words: KMnO4, TCE, manganese dioxide and dibasic sodium phosphate
3

A study of the components of the lead subacetate precipitate of the leaves of populus tremuloides

Kinsley, Homan, Jr. 01 January 1967 (has links)
No description available.

Page generated in 0.0405 seconds