• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 87
  • 23
  • 22
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 339
  • 287
  • 68
  • 64
  • 63
  • 58
  • 43
  • 41
  • 33
  • 32
  • 32
  • 31
  • 29
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The role of the mitochondrial membrane system in apoptosis : the influence of oxidative stress on membranes and their interactions with apoptosis-regulating Bcl-2 proteins

Lidman, Martin January 2015 (has links)
Apoptosis is a crucial process in multicellular organisms in sculpting them, especially during embryogenesis. In addition, apoptosis is responsible for the clearance of harmful or damaged cells which can otherwise be detrimental to the organism. The Bcl-2 family proteins are key players in the regulation of the intrinsic pathway of the apoptotic machinery. This family consists of three subfamilies with B-cell CLL/lymphoma 2 (Bcl-2) protein itself representing anti-apoptotic members, the Bcl-2-associated X protein (Bax), and pro-apoptotic BH3-only signaling proteins. The interplay between pro- and anti-apoptotic proteins on the mitochondrial membranes is central to the balance between the life and death decision of whether the membrane should be permeabilized or not. The cytosolic Bax protein can upon cellular stress translocate to the mitochondrial membrane where it can either carry out its action of forming homo-oligomers that cause outer membrane permeabilization or be inhibited there by the anti-apoptotic membrane protein Bcl-2. Upon mitochondrial outer membrane permeabilization (MOMP) apoptogenic factors leak out from the intermembrane space (IMS) of the mitochondria, leading to caspase activation and ultimately cell death. A common stress signal initiating apoptosis is an increased formation of reactive oxygen species (ROS in the mitochondria, who can cause oxidative damage to lipid membranes. This membrane damage presumably influences the lipid landscape and the membrane features and hence the interactions of the Bcl-2 family proteins with each other and the mitochondrial outer membrane (MOM). To investigate the significance of membrane oxidation on the behavior of the Bcl-2 family proteins, especially Bax, synthetically produced oxidized phospholipids (OxPls) were incorporated in MOM-mimicking vesicles. Differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectroscopy and circular dichroism (CD) spectroscopy revealed a major perturbation in membrane organization in the presence of OxPls. These changes in membrane properties increase the affinity of Bax to its target membrane and enable its partial penetration and formation of pores, as fluorescence leakage assays confirmed. However, in the absence of BH3-only proteins these pores are not sufficiently large for the release of apopototic factors such as cytochrome C (CytC). To understand the inhibition of Bax by the full-length Bcl-2 protein, suitable detergent solubilizing conditions were carefully chosen to enable the measurement of their direct binding to each other outside the membrane, by an antimycin A2 fluorescence assay. The observed protein-protein interaction was confirmed by surface plasmon resonance (SPR). An established protocol for the reconstitution of Bcl-2 into stable proteoliposomes now paves the way for structural studies of this key protein, in its membrane environment near physiological conditions; information essential for understanding its function, on a molecular level, and its potential as a cancer drug target.
112

Chirality of Light and Its Interaction with Chiral Matter

Tang, Yiqiao 18 March 2013 (has links)
This thesis conducts a systematic study on the chirality of light and its interaction with chiral matter. In the theory section, we introduce a measure of local density of chirality, applying to arbitrary electromagnetic fields. This optical chirality suggests the existence of superchiral modes, which are more selective than circularly polarized light (CPL) in preferentially exciting single enantiomers in certain regions of space. Experimentally, we demonstrate an 11-fold enhancement over CPL in discriminating chiral fluorophores of single handedness in a precisely sculpted superchiral field. This result agrees to within 15% with theoretical predictions. Any chiral configuration of point charges is beyond the scope of our theory on optical chirality. To address chiroptical excitations at nanoscale, we develop a model of twisted dipolar oscillators. We design a simple tunable chiral nanostructure and observe localized chiroptical “hot spots” with dramatically enhanced circular differential scattering. Our work on superchiral light and 3D chiral metamaterials establishes optical chirality as a fundamental and tunable property of light, with implications ranging from plasmonic sensors, absolute asymmetric synthesis to new strategies for fabricating three-dimensional chiral metamaterials. This thesis is organized as such: Chapter 1 provides a background on previous studies of chiroptical phenomena, and recent efforts in preparing chiral metamaterials. Chapter 2 derives theory on optical chirality, superchiral modes and coupled-dipolar oscillators at nanoscale. Chapter 3 introduces material, apparatus, and pitfalls in chiroptical experiments. Chapter 4 is an overview of the experimental procedure and results on generating and observing superchiral enhancement. Chapter 5 describes the experiments on using spectroscopic polarization microscopy to study chiral 3D chiral metamaterials. Finally in Chapter 6, I discuss quantization of optical chirality and perspectives on future directions. / Physics
113

New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES

Tatsumi, Kazuyoshi, Muto, Shunsuke, Rusz, Ján 02 1900 (has links)
No description available.
114

Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution

Rusz, J., Tatsumi, K., Muto, S. 02 1900 (has links)
No description available.
115

The spectroscopic characterization of mitochondrial porin in membrane mimetic systems

Bay, Denice Colleen 08 January 2007 (has links)
Voltage-dependent anion-selective channels (VDAC), or mitochondrial porins,regulate the flow of metabolites across the mitochondrial outer membrane. They presumably span the membrane as β-barrels, but the residues forming the individual β-strands are unknown. This information is essential for understanding the structure and function of the protein. Using Neurospora VDAC as a template, published data were reassessed to delineate a unified model for porin structure Bay and Court 2002, which was subsequently refined in collaboration with Greg Runke Runke et al. 2006. The focus of this work was the development and analysis of systems for maintaining high levels of folded porin for the acquisition of high resolution data needed for model testing. The conformation of hexahistidinyl-tagged Neurospora porin in detergent was probed by fluorescence, near-UV circular dichroism and ultraviolet absorption spectroscopy. Derivatives of tryptophan and tyrosine were also examined by fluorescence spectroscopy and UV absorbance spectroscopy to model the interactions between the detergents and the amino acid side chains in the protein. Detergent-specific levels of β-strand and tyrosine exposure were observed. In all cases, the two tryptophan residues reside in weakly asymmetric, hydrophobic environments, suggesting transient tertiary interactions. Porin solubilized in these detergents forms functional channels in liposomes and membrane insertion is accompanied by increased levels of β-strand and loss of protease sensitivity. These data were used to develop mixed detergent folding systems. A mixture of SDS and dodecyl-β-D-maltopyranoside (DDM)supports a β-strand rich conformation at high protein concentrations. The tertiary contacts and protease resistance of the SDS/DDM solubilized porin are very similar to those of the protein following reconstitution into liposomes. Finally, the role of sterols in porin folding was examined, as the addition of sterols to detergent-solubilized VDAC is required for channel formation in artificial membranes. Sterols do not alter the secondary structure of VDAC, and subtle alterations to tertiary interactions were detected, suggesting that sterols do not promote an insertion-competent structure, but rather facilitate insertion into artificial bilayers. In summary, this analysis of the folded states of detergent-solubilized porin has revealed a system that maintains high concentrations of mitochondrial porin in a state that is very promising for structural studies.
116

Misfolding of Particular PrP and Susceptibility to Prion Infection

Khan, Muhammad Qasim 27 July 2010 (has links)
Pathogenesis of prion diseases in animals is associated with the misfolding of the cellular prion protein PrPC to the infectious form, PrPSc. We hypothesized that an animal’s susceptibility to prions is correlated with the propensity of an animal’s PrPC to adopt a β-sheet, PrPSc-like, conformation. We have developed a method which uses circular dichroism (CD) to directly calculate the relative population of PrP molecules that adopt a β-sheet conformation or the ‘β-state’, as a function of denaturant concentration and pH. We find that the PrP from animals that are more susceptible to prion diseases, like hamsters and mice, adopt the β-state more readily than the PrP from rabbits. The X-ray crystal structure of rabbit PrP reveals a helix-capping motif that may lower the propensity to form the β-state. PrP in the β-state contains both monomeric and octameric β-structured species, and possesses cytotoxic properties.
117

Misfolding of Particular PrP and Susceptibility to Prion Infection

Khan, Muhammad Qasim 27 July 2010 (has links)
Pathogenesis of prion diseases in animals is associated with the misfolding of the cellular prion protein PrPC to the infectious form, PrPSc. We hypothesized that an animal’s susceptibility to prions is correlated with the propensity of an animal’s PrPC to adopt a β-sheet, PrPSc-like, conformation. We have developed a method which uses circular dichroism (CD) to directly calculate the relative population of PrP molecules that adopt a β-sheet conformation or the ‘β-state’, as a function of denaturant concentration and pH. We find that the PrP from animals that are more susceptible to prion diseases, like hamsters and mice, adopt the β-state more readily than the PrP from rabbits. The X-ray crystal structure of rabbit PrP reveals a helix-capping motif that may lower the propensity to form the β-state. PrP in the β-state contains both monomeric and octameric β-structured species, and possesses cytotoxic properties.
118

Structure and Function of Binuclear Metallohydrolases: Enterobacter aerogenes glycerophosphodiesterase and related enzymes

Kieran Hadler Unknown Date (has links)
This thesis is focussed on structural and functional studies of a novel glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. GpdQ is highly promiscuous and is the first known phosphatase which is capable of degrading all three classes of phosphate esters (mono-, di- and triesters). Remarkably, GpdQ is also able to hydrolyse stable aliphatic phosphate esters and has been shown to degrade the hydrolysis product of the nerve agent VX. For these reasons, GpdQ has been realised to have potential as a powerful bioremediator for the removal of organophosphate pesticides and nerve agents. GpdQ is a binuclear metallohydrolase in which one of the metal ions is very weakly bound. Chapter 1 introduces the catalytic mechanisms of binuclear metallohydrolases by examining two related phosphate ester-degrading enzymes. Since one of the main features of catalysis addressed in this thesis are the differential metal binding affinities of GpdQ, Chapter 1 also canvasses a range of other binuclear metallohydrolases with similar behaviour. Chapter 2 examines the structural and evolutionary relationship between GpdQ and a number of other related enzymes. Using genome database searches, the two most closely related enzymes are identified. In performing these searches, a novel, putative binuclear metallohydrolase from Homo sapiens is also discovered. This enzyme, Hsa_aTRACP, is most closely related to PAPs, however construction of a homology model indicates that the active site tyrosine residue of PAP is replaced by histidine. In this respect, it may represent an evolutionary link to Ser/Thr protein phosphatases and GpdQ. The biology and chemistry of this putative enzyme is discussed. PAPs are the only binuclear enzymes with an established heterovalent active site of the type Fe(III)-M(II) (where M=Fe, Zn or Mn) whereas the majority of enzymes in this family have homovalent metal centres, including GpdQ and Ser/Thr protein. This is brought about due to the nature of the coordination sphere imposed by the enzyme. The activity of GpdQ can be reconstituted in the presence of Co(II), Zn(II), Mn(II) and Cd(II). Chapter 3 examines the kinetic properties of a binuclear homovalent system by studying the kinetic properties of Cd(II)-substituted GpdQ and a corresponding model complex. This comparative study leads to the identification of a terminal hydroxide molecule as the likely reaction-initiating nucleophile in Cd(II)-GpdQ with a pKa of 9.4. In Chapter 4, a detailed study of the structural, kinetic and spectroscopic behaviour of Co(II)-substituted GpdQ is presented. This chapter specifically probes the formation of the binuclear active site, the role of the metal ions in catalysis, the identity of the nucleophile and the potential role of any first or second coordination sphere residues in the regulation of enzyme activity, proton donation and metal ion coordination. Based on these findings, a detailed reaction mechanism is proposed in which the substrate itself promotes the formation of the catalytically competent binuclear centre and phosphorolysis occurs following nucleophilic attack by a terminal hydroxide molecule. A potential role of Asn80 (a ligand of one of the metal ions) in regulating both substrate and metal binding, and the role of the bridging hydroxide molecule in the activation of the terminal nucleophile is proposed. Chapter 5 employs a combination of kinetic and spectroscopic techniques to probe the proposed catalytic mechanism of GpdQ in depth. The formation of the catalytically competent binuclear centre is observed in pre-steady state studies, an integral first step in the catalytic mechanism. The dissociation and rate constants associated with formation of the binuclear centre are quantified. The rate of substrate turnover in GpdQ is relatively modest but is enhanced by a structural rearrangement involving the flexible Asn80 ligand. This structural change fine-tunes the reaction mechanism, leading to optimal reactivity. The steady-state kinetic properties of a series of metal ion derivatives (Co(II), Cd(II) and Mn(II)) of GpdQ and their reactivity towards a number of substrates are also compared. These findings lead to the conclusion that the reaction mechanism of GpdQ is modulated by both substrate and metal ion. In this respect, GpdQ is adaptive to the environmental conditions to which it is exposed by employing a flexible mechanistic strategy to achieve catalysis. Chapter 6 correlates the electronic and geometric structure of the binuclear centre in GpdQ as a means to probe specific aspects of the mechanism. This study uses the wild type enzyme and a site-directed mutant (Asn80Asp) to examine the structure of the metal ions at two stages of catalysis. The role of the bridging hydroxide molecule in nucleophilic activation is specifically addressed by monitoring changes in the electronic exchange interaction and other structural parameters as a result of phosphate binding. Also, the coordination environment of the metal ions in both the free enzyme and the phosphate-bound enzyme of wild type and Asn80Asp GpdQ were assessed against the currently proposed structures. The findings in this chapter corroborate the proposed catalytic mechanism of GpdQ. In summary, this project led to a detailed understanding of the mechanism of GpdQ, and provided insight into how both the metal ion composition and the identity of the substrate may modulate this mechanism. The knowledge gained may lead to the design of catalytically more efficient derivatives (mutants) of GpdQ for application in bioremediation.
119

Structure and Function of Binuclear Metallohydrolases: Enterobacter aerogenes glycerophosphodiesterase and related enzymes

Kieran Hadler Unknown Date (has links)
This thesis is focussed on structural and functional studies of a novel glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. GpdQ is highly promiscuous and is the first known phosphatase which is capable of degrading all three classes of phosphate esters (mono-, di- and triesters). Remarkably, GpdQ is also able to hydrolyse stable aliphatic phosphate esters and has been shown to degrade the hydrolysis product of the nerve agent VX. For these reasons, GpdQ has been realised to have potential as a powerful bioremediator for the removal of organophosphate pesticides and nerve agents. GpdQ is a binuclear metallohydrolase in which one of the metal ions is very weakly bound. Chapter 1 introduces the catalytic mechanisms of binuclear metallohydrolases by examining two related phosphate ester-degrading enzymes. Since one of the main features of catalysis addressed in this thesis are the differential metal binding affinities of GpdQ, Chapter 1 also canvasses a range of other binuclear metallohydrolases with similar behaviour. Chapter 2 examines the structural and evolutionary relationship between GpdQ and a number of other related enzymes. Using genome database searches, the two most closely related enzymes are identified. In performing these searches, a novel, putative binuclear metallohydrolase from Homo sapiens is also discovered. This enzyme, Hsa_aTRACP, is most closely related to PAPs, however construction of a homology model indicates that the active site tyrosine residue of PAP is replaced by histidine. In this respect, it may represent an evolutionary link to Ser/Thr protein phosphatases and GpdQ. The biology and chemistry of this putative enzyme is discussed. PAPs are the only binuclear enzymes with an established heterovalent active site of the type Fe(III)-M(II) (where M=Fe, Zn or Mn) whereas the majority of enzymes in this family have homovalent metal centres, including GpdQ and Ser/Thr protein. This is brought about due to the nature of the coordination sphere imposed by the enzyme. The activity of GpdQ can be reconstituted in the presence of Co(II), Zn(II), Mn(II) and Cd(II). Chapter 3 examines the kinetic properties of a binuclear homovalent system by studying the kinetic properties of Cd(II)-substituted GpdQ and a corresponding model complex. This comparative study leads to the identification of a terminal hydroxide molecule as the likely reaction-initiating nucleophile in Cd(II)-GpdQ with a pKa of 9.4. In Chapter 4, a detailed study of the structural, kinetic and spectroscopic behaviour of Co(II)-substituted GpdQ is presented. This chapter specifically probes the formation of the binuclear active site, the role of the metal ions in catalysis, the identity of the nucleophile and the potential role of any first or second coordination sphere residues in the regulation of enzyme activity, proton donation and metal ion coordination. Based on these findings, a detailed reaction mechanism is proposed in which the substrate itself promotes the formation of the catalytically competent binuclear centre and phosphorolysis occurs following nucleophilic attack by a terminal hydroxide molecule. A potential role of Asn80 (a ligand of one of the metal ions) in regulating both substrate and metal binding, and the role of the bridging hydroxide molecule in the activation of the terminal nucleophile is proposed. Chapter 5 employs a combination of kinetic and spectroscopic techniques to probe the proposed catalytic mechanism of GpdQ in depth. The formation of the catalytically competent binuclear centre is observed in pre-steady state studies, an integral first step in the catalytic mechanism. The dissociation and rate constants associated with formation of the binuclear centre are quantified. The rate of substrate turnover in GpdQ is relatively modest but is enhanced by a structural rearrangement involving the flexible Asn80 ligand. This structural change fine-tunes the reaction mechanism, leading to optimal reactivity. The steady-state kinetic properties of a series of metal ion derivatives (Co(II), Cd(II) and Mn(II)) of GpdQ and their reactivity towards a number of substrates are also compared. These findings lead to the conclusion that the reaction mechanism of GpdQ is modulated by both substrate and metal ion. In this respect, GpdQ is adaptive to the environmental conditions to which it is exposed by employing a flexible mechanistic strategy to achieve catalysis. Chapter 6 correlates the electronic and geometric structure of the binuclear centre in GpdQ as a means to probe specific aspects of the mechanism. This study uses the wild type enzyme and a site-directed mutant (Asn80Asp) to examine the structure of the metal ions at two stages of catalysis. The role of the bridging hydroxide molecule in nucleophilic activation is specifically addressed by monitoring changes in the electronic exchange interaction and other structural parameters as a result of phosphate binding. Also, the coordination environment of the metal ions in both the free enzyme and the phosphate-bound enzyme of wild type and Asn80Asp GpdQ were assessed against the currently proposed structures. The findings in this chapter corroborate the proposed catalytic mechanism of GpdQ. In summary, this project led to a detailed understanding of the mechanism of GpdQ, and provided insight into how both the metal ion composition and the identity of the substrate may modulate this mechanism. The knowledge gained may lead to the design of catalytically more efficient derivatives (mutants) of GpdQ for application in bioremediation.
120

Structural and functional analysis of antiparallel coiled coils from Escherichia coli osmosensory protein ProP and rat cytoplasmic dynein /

Zoetewey, David Lawrence. January 2008 (has links)
Thesis (Ph.D. in Molecular Biology) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 155-167). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;

Page generated in 0.0742 seconds