521 |
An analysis of discretisation methods for ordinary differential equationsPitcher, Neil January 1980 (has links)
Numerical methods for solving initial value problems in ordinary differential equations are studied. A notation is introduced to represent cyclic methods in terms of two matrices, A<sub>h</sub>, and B<sub>h</sub>, and this is developed to cover the very extensive class of m-block methods. Some stability results are obtained and convergence is analysed by means of a new consistency concept, namely optimal consistency. It is shown that optimal consistency allows one to give two-sided bounds on the global error, and examples are given to illustrate this. The form of the inverse of A<sub>h</sub> is studied closely to give a criterion for the order of convergence to exceed that of consistency by one. Further convergence results are obtained , the first of which gives the orders of convergence for cases in which A<sub>h</sub>, and B<sub>h</sub>, have a special form, and the second of which gives rise to the possibility of the order of convergence exceeding that of consistency by two or more at some stages. In addition an alternative proof is given of the superconvergence result for collocation methods. In conclusion the work covered is set in the context of that done in recent years by various authors.
|
522 |
The dynamics of wave propagation in an inhomogeneous medium: the complex Ginzburg-Landau modelLam, Chun-kit., 林晉傑. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
523 |
Symmetry methods for integrable systemsMulvey, Joseph Anthony January 1996 (has links)
This thesis discusses various properties of a number of differential equations which we will term "integrable". There are many definitions of this word, but we will confine ourselves to two possible characterisations — either an equation can be transformed by a suitable change of variables to a linear equation, or there exists an infinite number of conserved quantities associated with the equation that commute with each other via some Hamiltonian structure. Both of these definitions rely heavily on the concept of the symmetry of a differential equation, and so Chapters 1 and 2 introduce and explain this idea, based on a geometrical theory of p.d.e.s, and describe the interaction of such methods with variational calculus and Hamiltonian systems. Chapter 3 discusses a somewhat ad hoc method for solving evolution equations involving a series ansatz that reproduces well-known solutions. The method seems to be related to symmetry methods, although the precise connection is unclear. The rest of the thesis is dedicated to the so-called Universal Field Equations and related models. In Chapter 4 we look at the simplest two-dimensional cases, the Bateman and Born-lnfeld equations. By looking at their generalised symmetries and Hamiltonian structures, we can prove that these equations satisfy both the definitions of integrability mentioned above. Chapter Five contains the general argument which demonstrates the linearisability of the Bateman Universal equation by calculation of its generalised symmetries. These symmetries are helpful in analysing and generalising the Lagrangian structure of Universal equations. An example of a linearisable analogue of the Born-lnfeld equation is also included. The chapter concludes with some speculation on Hamiltoian properties.
|
524 |
Stability and Boundedness of Impulsive Systems with Time DelayWang, Qing 27 March 2007 (has links)
The stability and boundedness theories are developed for impulsive differential equations with time delay. Definitions, notations and
fundamental theory are presented for delay differential systems with both fixed and state-dependent impulses. It is usually more
difficult to investigate the qualitative properties of systems with state-dependent impulses since different solutions have
different moments of impulses. In this thesis, the stability problems of nontrivial solutions of systems with state-dependent impulses are ``transferred" to those of the trivial solution of systems with fixed impulses by constructing the so-called ``reduced system". Therefore, it is enough to investigate the
stability problems of systems with fixed impulses. The exponential stability problem is then discussed for the system with fixed
impulses. A variety of stability criteria are obtained and`numerical examples are worked out to illustrate the results, which shows that impulses do contribute to the stabilization of some delay differential equations. To unify various stability concepts and to offer a general framework for the investigation of
stability theory, the concept of stability in terms of two measures is introduced and then several stability criteria are developed for impulsive delay differential equations by both the single and multiple Lyapunov functions method. Furthermore, boundedness and periodicity results are discussed for impulsive differential systems with time delay. The Lyapunov-Razumikhin technique, the Lyapunov functional method, differential
inequalities, the method of variation of parameters, and the partitioned matrix method are the main tools to obtain these results. Finally, the application of the stability theory to neural networks is presented. In applications, the impulses are considered as either means of impulsive control or perturbations.Sufficient conditions for stability and stabilization of neural
networks are obtained.
|
525 |
Pathwise view on solutions of stochastic differential equationsSipiläinen, Eeva-Maria January 1993 (has links)
The Ito-Stratonovich theory of stochastic integration and stochastic differential equations has several shortcomings, especially when it comes to existence and consistency with the theory of Lebesque-Stieltjes integration and ordinary differential equations. An attempt is made firstly, to isolate the path property, possessed by almost all Brownian paths, that makes the stochastic theory of integration work. Secondly, to construct a new concept of solutions for differential equations, which would have the required consistency and continuity properties, within a class of deterministic noise functions, large enough to include almost all Brownian paths. The algebraic structure of iterated path integrals for smooth paths leads to a formal definition of a solution for a differential equation in terms of generalized path integrals for more general noises. This suggests a way of constructing solutions to differential equations in a large class of paths as limits of operators. The concept of the driving noise is extended to include the generalized path integrals of the noise. Less stringent conditions on the Holder continuity of the path can be compensated by giving more of its iterated integrals. Sufficient conditions for the solution to exist are proved in some special cases, and it is proved that almost all paths of Brownian motion as well as some other stochastic processes can be included in the theory.
|
526 |
Strominger's system on non-Kähler hermitian manifoldsLee, Hwasung January 2011 (has links)
In this thesis, we investigate the Strominger system on non-Kähler manifolds. We will present a natural generalization of the Strominger system for non-Kähler hermitian manifolds M with c₁(M) = 0. These manifolds are more general than balanced hermitian manifolds with holomorphically trivial canonical bundles. We will then consider explicit examples when M can be realized as a principal torus fibration over a Kähler surface S. We will solve the Strominger system on such construction which also includes manifolds of topology (k−1)(S²×S⁴)#k(S³×S³). We will investigate the anomaly cancellation condition on the principal torus fibration M. The anomaly cancellation condition reduces to a complex Monge-Ampère-type PDE, and we will prove existence of solution following Yau’s proof of the Calabi-conjecture [Yau78], and Fu and Yau’s analysis [FY08]. Finally, we will discuss the physical aspects of our work. We will discuss the Strominger system using α'-expansion and present a solution up to (α')¹-order. In the α'-expansion approach on a principal torus fibration, we will show that solving the anomaly cancellation condition in topology is necessary and sufficient to solving it analytically. We will discuss the potential problems with α'-expansion approach and consider the full Strominger system with the Hull connection. We will show that the α'-expansion does not correctly capture the behaviour of the solution even up to (α')¹-order and should be used with caution.
|
527 |
On spectral relaxation and compact finite difference schemes for ordinary and partial differential equations03 July 2015 (has links)
Ph.D. (Applied Mathematics) / In this thesis we introduce new numerical methods for solving nonlinear ordinary and partial differential equations. These methods solve differential equations in a manner similar to the Gauss Seidel approach of solving linear systems of algebraic equations. First the nonlinear differential equations are linearized by simply evaluating nonlinear terms at previous iterations. To solve the linearized iteration schemes obtained we use either the spectral method or higher order compact finite difference schemes and we call the resulting methods the spectral relaxation method (SRM) and the compact finite difference relaxation method (CFD-RM) respectively. We test the applicability of these methods in a wide variety of ODEs and PDEs. The accuracy and computational efficiency in terms of CPU time is compared against other methods as well as other results from literature. We solve a range of chaotic and hyperchaotic systems of equations. Chaotic and hyperchaotic are complex dynamical systems which are characterised by rapidly changing solutions and high sensitivity to small perturbations of the initial data. As a result finding their solutions is a challenging task. We modify the proposed SRM to be able to deal with such systems of equations. We also consider chaos control and synchronization between too identical chaotic systems. We also make a comparison between the SRM and CFD-RM and between the spectral quasilinearization method (SQLM) and the compact finite difference quasilinearization method (CFD-QLM). The aim is to compare the performance between the spectral and the compact finite difference approaches in solving similarity boundary layer problems. We consider two examples. First, we consider the flow of a viscous incompressible electrically conducting fluid over a continuously shrinking sheet. We also consider a three-equation system that models the problem of unsteady free convective heat and mass transfer on a stretching surface in a porous medium in the presence of a chemical reaction. We extend the application of the SRMand SQLMto PDEs. In particular we consider two unsteady boundary layer flow problems modelled by a PDE or a system of PDEs. We solve a one dimensional unsteady boundary layer flow due to an impulsively stretching surface and the problem of unsteady three-dimensional MHD flow and mass transfer in a porous space. Results are compared with results obtained using the Keller-box method which is popular in solving unsteady boundary layer problems. We also extend the application of the CFD-RM to PDEs modelling unsteady boundary layer flows and again compare results to Keller-box results. We consider two examples, the unsteady one dimensional MHD laminar boundary layer flow due to an impulsively stretching surface, and the unsteady three-dimensional MHD flow and heat transfer over an impulsively stretching plate.
|
528 |
Group theoretical and compatibility approaches to some nonlinear PDEs arising in the study of non-Newtonian fluid mechanicsAziz, Taha 06 May 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2015. / This thesis is primarily concerned with the analysis of some nonlinear
problems arising in the study of non-Newtonian fluid mechanics by
employing group theoretic and compatibility approaches.
It is well known now that many manufacturing processes in industry involve
non-Newtonian fluids. Examples of such fluids include polymer solutions
and melts, paints, blood, ketchup, pharmaceuticals and many others. The
mathematical and physical behaviour of non-Newtonian fluids is
intermediate between that of purely viscous fluid and that of a perfectly
elastic solid. These fluids cannot be described by the classical Navier–Stokes
theory. Striking manifestations of non-Newtonian fluids have been observed
experimentally such as the Weissenberg or rod-climbing effect, extrudate
swell or vortex growth in a contraction flow. Due to diverse physical
structure of non-Newtonian fluids, many constitutive equations have been
developed mainly under the classification of differential type, rate type and
integral type. Amongst the many non-Newtonian fluid models, the fluids of
differential type have received much attention in order to explain features
such as normal stress effects, rod climbing, shear thinning and shear
thickening.
Most physical phenomena dealing with the study of non-Newtonian fluids
are modelled in the form of nonlinear partial differential equations (PDEs).
It is easier to solve a linear problem due to its extensive study as well due to
|
529 |
The application of non-linear partial differential equations for the removal of noise in audio signal processingShipton, Jarrod Jay January 2017 (has links)
A dissertation submitted in fulfllment for the
degree of Masters of Science
in the
Faculty of Science
School of Computer Science and Applied Mathematics
October 2017. / This work explores a new method of applying partial di erential equations to audio signal
processing, particularly that of noise removal. Two methods are explored and compared
to the method of noise removal used in the free software Audacity(R). The rst of these
methods uses a non-linear variation of the di usion equation in two dimensions, coupled
with a non-linear sink/source term, in order to lter the imaginary and real components
of an array of overlapping windows of the signal's Fourier transform. The second model is
that of a non-linear di usion function applied to the magnitude of the Fourier transform
in order to estimate the noise power spectrum to be used in a spectral subtraction noise
removal technique. The technique in this work features nite di erence methods to
approximate the solutions of each of the models. / LG2018
|
530 |
Spectral properties of a fourth order differential equation with eigenvalue dependent boundary conditionsMoletsane, Boitumelo 23 February 2012 (has links)
M.Sc., Faculty of Science, University of the Witwatersrand, 2011
|
Page generated in 0.1287 seconds