• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exact solutions of zonal shear fluid flow with free surface and density stratification

Cortes, Edwin A. 01 July 2003 (has links)
No description available.
2

Hyperbolic problems in fluids and relativity

Schrecker, Matthew January 2018 (has links)
In this thesis, we present a collection of newly obtained results concerning the existence of vanishing viscosity solutions to the one-dimensional compressible Euler equations of gas dynamics, with and without geometric structure. We demonstrate the existence of such vanishing viscosity solutions, which we show to be entropy solutions, to the transonic nozzle problem and spherically symmetric Euler equations in Chapter 4, in both cases under the simple and natural assumption of relative finite-energy. In Chapter 5, we show that the viscous solutions of the one-dimensional compressible Navier-Stokes equations converge, as the viscosity tends to zero, to an entropy solution of the Euler equations, again under the assumption of relative finite-energy. In so doing, we develop a compactness framework for the solutions and approximate solutions to the Euler equations under the assumption of a physical pressure law. Finally, in Chapter 6, we consider the Euler equations in special relativity, and show the existence of bounded entropy solutions to these equations. In the process, we also construct fundamental solutions to the entropy equations and develop a compactness framework for the solutions and approximate solutions to the relativistic Euler equations.

Page generated in 0.1716 seconds