1 |
Scaling, Power-Law First Return Times, and Non-ErgodicityLambert, David Robert 08 1900 (has links)
This dissertation is a collection of papers on anomalous phenomena in physics, biology, and sociology. These phenomena are primarily analyzed in terms of their temporal and spatiotemporal statistical properties. The analysis is based on both numerical simulations and, in some cases, real-world physiological and sociological data. The primary methods of analysis are diffusion entropy analysis, power spectral analysis, multifractal analysis, and survival (or waiting-time) analysis.
|
2 |
A Dynamic and Thermodynamic Approach to Complexity.Yang, Jin 08 1900 (has links)
The problem of establishing the correct approach to complexity is a very hot and crucial issue to which this dissertation gives some contributions. This dissertation considers two main possibilities, one, advocated by Tsallis and co-workers, setting the foundation of complexity on a generalized, non-extensive , form of thermodynamics, and another, proposed by the UNT Center for Nonlinear Science, on complexity as a new condition that, for physical systems, would be equivalent to a state of matter intermediate between dynamics and thermodynamics. In the first part of this dissertation, the concept of Kolmogorov-Sinai entropy is introduced. The Pesin theorem is generalized in the formalism of Tsallis non-extensive thermodynamics. This generalized form of Pesin theorem is used in the study of two major classes of problems, whose prototypes are given by the Manneville and the logistic map respectively. The results of these studies convince us that the approach to complexity must be made along lines different from those of the non-extensive thermodynamics. We have been convinced that the Lévy walk can be used as a prototype model of complexity, as a condition of balance between order and randomness that yields new phenomena such as aging, and multifractality. We reach the conclusions that these properties must be studied within a dynamic rather than thermodynamic perspective. The second part focuses on the study of the heart beating problem using a dynamic model, the so-called memory beyond memory, based on the Lévy walker model. It is proved that the memory beyond memory effect is more obvious in the healthy heart beating sequence. The concepts of fractal, multifractal, wavelet transformation and wavelet transform maximum modulus (WTMM) method are introduced. Artificial time sequences are generated by the memory beyond memory model to mimic the heart beating sequence. Using WTMM method, the multifratal singular spectrums of the sequences are calculated. It is clear that the sequence with strong memory beyond memory effect has broader singular spectrum.2003-08
|
3 |
Symmetric Fractional Diffusion and Entropy ProductionPrehl, Janett, Boldt, Frank, Hoffmann, Karl Heinz, Essex, Christopher 30 August 2016 (has links)
The discovery of the entropy production paradox (Hoffmann et al., 1998) raised basic questions about the nature of irreversibility in the regime between diffusion and waves. First studied in the form of spatial movements of moments of H functions, pseudo propagation is the pre-limit propagation-like movements of skewed probability density function (PDFs) in the domain between the wave and diffusion equations that goes over to classical partial differential equation propagation of characteristics in the wave limit. Many of the strange properties that occur in this extraordinary regime were thought to be connected in some manner to this form of proto-movement. This paper eliminates pseudo propagation by employing a similar evolution equation that imposes spatial unimodal symmetry on evolving PDFs. Contrary to initial expectations, familiar peculiarities emerge despite the imposed symmetry, but they have a distinct character.
|
Page generated in 0.1087 seconds