• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrodesulfurization and Hydrodenitrogenation of Model Compounds Using in-situ Hydrogen over Nano-Dispersed Mo Sulfide Based Catalysts

Liu, Kun 06 November 2014 (has links)
Heavy oil derived from oil sands is becoming an important resource of energy and transportation fuels due to the depletion of conventional oil resources. However, bitumen and heavy oils have a low hydrogen/carbon ratio and contain a large percentage of sulfur and nitrogen heterocyclic compounds. At the level of deep desulfurization, aromatic poly-nuclear molecules, especially nitrogen-containing heterocyclic compounds, exhibit strong inhibitive effect on hydrodesulfurization (HDS) due to competitive adsorption on catalytically active sites with sulfur-containing molecules. Therefore, it is necessary to study the HDS of refractory sulfur-containing compounds and also the effect of nitrogen-containing species on the deep HDS for achieving the ultra low sulfur specifications for transportation fuels. Additionally, the cost of H2 increased in recent years and a bitumen emulsion upgrading technique using an alternative in-situ H2 generated via the water gas shift (WGS) reaction during the hydro-treating was developed in our group. In the present study, a kind of nano-dispersed unsupported MoSx based catalyst was developed and used for hydrodesulfurization, hydrodenitrogenation (HDN) and upgrading bitumen emulsions. Objectives of this thesis were to (1) improve the catalytic activity of the nano-dispersed Mo based catalysts towards the HDS and HDN reactions of refractory sulfur-/nitrogen-containing compounds; and (2) compare the reactivity of in-situ hydrogen generated via the WGS reaction versus externally provided molecular hydrogen in HDS and HDN reactions to improve the efficiency of the bitumen emulsion upgrading technology developed by our group. In the present study, to stimulate the reaction system of bitumen emulsion, water was added into the organic reaction system, so there are different phases in this reaction system. To investigate the activity of the catalyst, the catalyst particles dispersed in different phases were characterized separatedly via HRTEM-EDX. After HRTEM-EDX study, all phases were mixed up and dried for further characterizations, BET, SEM, and XRD. The catalyst prepared in in-situ hydrogen was found to have higher surface area and smaller particle size than the one made in molecular hydrogen. The presence of sulfur-/nitrogen-containing compounds in the preparation system caused significant changes in the morphology of dispersed Mo sulfide catalyst according to HRTEM observations. Refractory sulfur-containing compounds of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were used as model compounds in HDS studies. The simultaneous HDS of both model compounds was performed at different reaction temperatures from 330??C to 400??C. The effect of the reaction temperature on the WGS reaction in the presence of sulfur-containing model compounds was reported. A kinetic model for HDS reactions was proposed and used in discussing experiment results. The relative HDS reactivity of 4,6-DMDBT to DBT using dispersed Mo sulfide catalyst in in-situ hydrogen was found to be higher than the reported results which were obtained over supported catalysts. Nickel and potassium were introduced into Mo sulfide catalysts as promoters and their effect on the WGS reaction and the HDS reaction were discussed. The simultaneous HDS was carried out in the two different hydrogen sources. The in-situ hydrogen reaction system showed higher conversion and desulfurization results of both sulfur model compounds. This observation has been found to be mainly contributed by the higher activity of the Mo sulfide catalyst prepared in in-situ H2. Strong inhibitive effect of nitrogen-containing compounds, basic quinoline or non-basic carbazole, on the HDS of refractory sulfur model compounds was observed and discussed. Basic quinoline was a much stronger inhibitor than non-basic carbazole. The two HDS reaction pathways were affected by nitrogen-containing compounds to different extents. The HDN of quinoline over the dispersed Mo sulfide catalyst using in-situ hydrogen had been studied extensively by a previous member in our group. In this thesis, the HDN of carbazole was studied. From the identification of HDN products of carbazole, a HDN reaction network was proposed. The HDN of carbazole was processed at different reaction temperatures. The WGS reaction was not inhibited in the presence of carbazole. Comparable reactivity of the two hydrogen sources towards the HDN of carbazole was observed. The presence of 4,6-DMDBT caused significant effect on the HDN of carbazole due to the competitive adsorption on the catalyst surface.
2

Nouvelle génération de précurseurs "bulk" de catalyseur d'hydrodésulfuration synthétisés en milieu fluides supercritique / New generation of "bulk" catalyst precursors for hydrodesulfurization synthesized in supercritical fluids

Théodet, Manuel 03 November 2010 (has links)
L’objet de ce travail de thèse porte sur la synthèse originale en milieu fluide supercritique (FSC) de précurseurs « bulk » de catalyseurs d’hydrodésulfuration (HDS) à haute surface spécifique (SBET), destinés à l’HDS de composés soufrés réfractaires tels que le 4,6 diméthyldibenzothiophène (4,6¬ DMDBT). Ce projet a été réalisé en collaboration entre l'Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) et l'Instituto de Tecnología Química de Valencia (ITQ-CSIC) dans le cadre du réseau européen d’excellence Functional Advanced Materials and Engineering of Hybrids and Ceramics (FAMEnoe). Les études à l’ICMCB se sont portées sur l’optimisation des paramètres de synthèse en milieu FSC de NixCo1-xMoO4 (0 ≤ x ≤ 1) (précurseurs métalliques, solvant, température, pression). Des poudres de précurseurs « bulk » majoritairement composées de la phase hydratée (NiMoO4.0,75H2O) - phase la plus active en HDS - de composition contrôlée et pouvant atteindre près de 200 m2.g-1 ont été obtenues et caractérisées.Les propriétés catalytiques de ces précurseurs « bulk » après sulfuration ont ensuite été testées à l’ITQ sur la réaction de Deep-HDS d’un mélange modèle et d’une fraction pétrolière réelle. L’étude souligne plus particulièrement leurs meilleures capacités d’hydrogénation et de catalyse de l’HDS du 4,6 DMDBT que le catalyseur commercial utilisé comme référence dans ces travaux. / This work deals with an original synthesis using supercritical fluids (SCF) of “bulk” catalyst precursors of hydrodesulfurization (HDS) with high specific surface area (SBET) and dedicated to the HDS of refractive sulfur compounds such as 4,6 dimethyldibenzothiophene (4,6-DMDBT). This work was performed in collaboration between the Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) and the Instituto de Tecnología Química de Valencia (ITQ-CSIC) within the Functional Advanced Materials and Engineering of Hybrids and Ceramics network of excellence (FAMEnoe).Studies performed at the ICMCB consisted in optimizing the parameters of the synthesis in SCF of NixCo1-xMoO4 (0 ≤ x ≤ 1) (metallic precursors, solvent, temperature, pressure). Powders of “bulk” precursors mainly consisting of the hydrated phase (NiMoO4.0,75H2O) - the most active phase in HDS - with controlled composition and SBET up to 200 m2.g-1 were obtained and characterized.The catalytic properties of those “bulk” precursors after sulfidation were then tested at the ITQ for the reaction of Deep-HDS of a model feedstock and a real feedstock. The experiments highlighted their better hydrogenation capacity and efficiency in catalyzing the HDS of 4,6 DMDBT than the commercial catalyst used as a reference in this work.

Page generated in 0.0727 seconds