• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • Tagged with
  • 26
  • 26
  • 17
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Houle à la côte Propagation, impacts et ouvrages innovants / Wave to the coast : propagation, impact and innovative structures

Arnaud, Gwendoline 03 November 2016 (has links)
L’objectif de ces travaux de thèse visait une meilleure compréhension et représentation de lapropagation de la houle à travers les milieux poreux afin de proposer une nouvelle caractérisation desouvrages de défense du littoral. L’influence du paramètre de surface spécifique des milieux poreux (surfacede contact fluide-solide), à porosité constante, est mise en évidence sur des écoulements permanents etoscillants forcés par la houle à l’aide de séries d’expériences réalisées en canal et bassin d’essai. Les donnéesexpérimentales obtenues sont comparées à des modèles théoriques basés sur la théorie potentielle des ondeset résolus à travers des méthodes intégrales de raccordement des potentiels aux frontières entre domaines.Les processus de réflexion, transmission et dissipation sont étudiés dans le cas bidimensionnel, les processusde réflexion, réfraction-diffraction et dissipation de la houle sont étudiés dans le cas tridimensionnel. Desphénomènes d’interférence des ondes sont mis en évidence en observant le caractère oscillant du coefficient deréflexion en fonction de la fréquence de la houle dans le cas 2D. A ce processus d’interférences dans la directionde propagation de la houle dans le cas 2D s’ajoute, dans le cas 3D, un phénomène d’interférences dans ladirection transversale à la direction de propagation de la houle. Un comportement linéaire ou quadratique dutaux de dissipation de l’onde à l’intérieur du milieu poreux est observé. Le rôle de la surface spécifique dans ladissipation de l’énergie de l’onde à travers le milieu poreux est mis en évidence. Les régimes d’écoulement etles effets d’échelle sont également discutés. / The purpose of this Ph-D work aims to enhance knowledge and better describe wave propagationthrough porous media in order to propose a new characterization of coastal defense structures. The influenceof the specific surface parameter (fluid-solid contact surface) of porous media is then highlighted at givenporosity for steady and oscillatory wave induced flows with experiment series carried out in either wave tankor basin. Experimental data are compared with theoretical models based on wave potential theory numericalsolved by use of integral matching method at the domains’ boundaries.Wave scattering in the presence of porous structure is studied in both 2D and 3D cases. Interference processwithin the porous media are observed in the 2D case, leading to an oscillatory behavior of the reflection versusfrequency. Additional interference processes are observed in the transverse direction in the 3D case, leadingto a wave behavior strongly dependent on wave dynamics at both sides of the porous structure for resonantcases. Either linear or quadratic behavior of the dissipation is observed within the porous media. The role ofthe specific surface in the dissipation process is demonstrated. Both flow regimes and scale effects are alsodiscussed.
2

Mesure, analyse et modélisation des processus physiques du manteau neigeux sec / Measurement, analysis and modeling of physical processes in dry snow

Carmagnola, Carlo Maria 22 November 2013 (has links)
La neige est un matériau poreux dont la microstructure change en permanence. L'ensemble de ces transformations, qui prend le nom de ``métamorphisme", est susceptible d'affecter les propriétés thermiques, mécaniques et électromagnétiques de la neige au niveau macroscopique. En particulier, les échanges d'énergie et de matière à l'intérieur du manteau neigeux et entre la neige et l'atmosphère sont fortement influencés par l'évolution au cours du temps de la microstructure de la neige. Une représentation adéquate du métamorphisme dans les modèles de manteau neigeux s'avère donc cruciale. La microstructure d'un matériau poreux peut être raisonnablement décrite en se servant d'un nombre réduit de variables. En effet, la masse volumique, la surface spécifique (SSA) et la distribution de courbure permettent de caractériser la microstructure d'un matériau. Cependant, dans le cas de la neige cette approche n'en est qu'à ses débuts et n'a pas encore été appliquée de façon systématique. Des variables semi-empiriques, difficiles à mesurer et dépourvues de lien direct avec d'autres propriétés physiques, sont encore largement utilisées dans les modèles détaillés de manteau neigeux. Ce travail de thèse s'inscrit dans cette tentative de représenter la microstructure de la neige au cours du temps à l'aide de variables bien définies et mesurables sur le terrain. Parmi ces variables, nous nous sommes attachés notamment à la SSA, qui constitue une grandeur essentielle pour l'étude du manteau neigeux et de son évolution temporelle. Différentes lois d'évolution de la SSA ont été étudiées, à partir de relations empiriques basées sur des ajustements de données expérimentales jusqu'aux modèles physiques qui représentent le flux de la vapeur d'eau entre les grains de neige. Ces lois ont été dans un premier temps testées à l'aide d'un modèle simplifié de manteau neigeux et puis introduites directement dans le modèle SURFEX/ISBA-Crocus. Pour ce faire, la SSA dans Crocus a été transformée en variable prognostique, en remplaçant d'autres variables semi-empiriques préexistantes. Les différentes formulations de l'évolution temporelle de la SSA ont été comparées à des mesures de terrain, acquises lors de deux campagnes à Summit (Groenland) et au Col de Porte (France). Ces mesures ont été effectuées en utilisant de nouvelles techniques optiques et ont permis d'obtenir un riche jeu de données avec une grande résolution verticale. Les résultats montrent que les différentes formulations sont comparables et reproduisent bien les mesures, avec un écart quadratique moyen entre les valeurs de SSA simulées et observées inférieur à 10 m^2/kg. Enfin, nous avons contribué à faire le pont entre la microstructure de la neige et ses propriétés macroscopiques. En particulier, nous nous sommes intéressés au lien entre, d'une part, la SSA et, d'autre part, les propriétés mécaniques et optiques. Dans le premier cas, nous avons investigué la corrélation entre la SSA et la résistance à l'enfoncement mesurée avec un Snow Micro Pen (SMP). Les résultats encore préliminaires semblent indiquer que la SSA peut être dérivée de la masse volumique et de grandeurs micro-mécaniques estimées à partir du signal du SMP avec un modèle statistique. Dans le deuxième cas, nous avons simulé l'albédo de surface à Summit à partir des profils mesurés de masse volumique et de SSA et du contenu en impuretés. Les résultats de cette étude ont démontré que l'albédo spectral peut être correctement simulé à l'aide d'un modèle de transfert radiatif et l'énergie absorbée par le manteau neigeux peut être estimée avec une précision d'environ 1%. / Snow is a porous medium whose microstructure is constantly subjected to morphological transformations. These transformations, which take the name of ``metamorphism", are likely to affect the thermal, mechanical and electromagnetic properties of snow at the macroscopic level. Specifically, the exchange of energy and matter within the snowpack and between the snow and the atmosphere above are strongly impacted by the evolution over time of the snow microstructure. Therefore, an adequate representation of metamorphism in snowpack models is crucial. The microstructure of a porous medium can be reasonably described using a reduced number of variables. Indeed, the density, the specific surface area (SSA) and the curvature distribution are able to characterize the microstructure of such a material. However, in the case of snow this approach is still in its infancy and has not yet been systematically applied. Semi-empirical variables, difficult to measure and not directly linked to other relevant physical properties, are still widely used in so-called detailed snowpack models. This work contributes to the attempt to represent the state of the snow using well-defined and easily measurable microstructural variables. Among these variables, we focused particularly on the SSA, which is a key quantity for the study of snow and its temporal evolution. Different evolution laws of SSA were studied, starting from empirical relationships based on experimental data adjustments to physical models that represent the flow of water vapor between snow grains. These laws were initially tested using a simplified snowpack model and then introduced directly into the SURFEX/ISBA-Crocus snowpack model. To this end, the SSA in Crocus was turned into a prognostic variable, replacing other preexisting semi-empirical variables. The different formulations of the temporal evolution of the SSA were compared with field measurements, acquired during two campaigns at Summit (Greenland) and the Col de Porte (France). These measurements were carried out using new optical techniques and yielded a rich dataset with high vertical resolution. The results show that the different formulations are comparable and reproduce well the observations, with an average root-mean-square deviation value between simulated and measured SSA lower than 10 m^/kg. Finally, we contributed to bridge the gap between snow microstructure and macroscopic properties. In particular, we investigated the link between the SSA on the one hand and the mechanical and optical properties on the other hand. In the first case, we investigated the correlation between the SSA and the penetration resistance measured with a Snow Micro Pen (SMP). The preliminary results suggest that the SSA can be retrieved from the snow density and the micro-mechanical parameters estimated from the SMP signal using a statistical model. In the second case, we simulated the surface albedo at Summit from the measured profiles of density, SSA and impurities within the snowpack. The results of this study showed that the spectral albedo can be simulated successfully using a radiative transfer model and the energy absorbed by the snowpack can be estimated with a good accuracy (about 1%).
3

Nouvelle génération de précurseurs "bulk" de catalyseur d'hydrodésulfuration synthétisés en milieu fluides supercritique

Théodet, Manuel 03 November 2010 (has links) (PDF)
L'objet de ce travail de thèse porte sur la synthèse originale en milieu fluide supercritique (FSC) de précurseurs « bulk » de catalyseurs d'hydrodésulfuration (HDS) à haute surface spécifique (SBET), destinés à l'HDS de composés soufrés réfractaires tels que le 4,6 diméthyldibenzothiophène (4,6¬ DMDBT). Ce projet a été réalisé en collaboration entre l'Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) et l'Instituto de Tecnología Química de Valencia (ITQ-CSIC) dans le cadre du réseau européen d'excellence Functional Advanced Materials and Engineering of Hybrids and Ceramics (FAMEnoe). Les études à l'ICMCB se sont portées sur l'optimisation des paramètres de synthèse en milieu FSC de NixCo1-xMoO4 (0 ≤ x ≤ 1) (précurseurs métalliques, solvant, température, pression). Des poudres de précurseurs « bulk » majoritairement composées de la phase hydratée (NiMoO4.0,75H2O) - phase la plus active en HDS - de composition contrôlée et pouvant atteindre près de 200 m2.g-1 ont été obtenues et caractérisées. Les propriétés catalytiques de ces précurseurs « bulk » après sulfuration ont ensuite été testées à l'ITQ sur la réaction de Deep-HDS d'un mélange modèle et d'une fraction pétrolière réelle. L'étude souligne plus particulièrement leurs meilleures capacités d'hydrogénation et de catalyse de l'HDS du 4,6 DMDBT que le catalyseur commercial utilisé comme référence dans ces travaux.
4

Evolution de la surface spécifique de la neige. Etudes expérimentales et de terrain, paramétrisation.

Taillandier, Anne-Sophie 10 March 2006 (has links) (PDF)
Dans la neige, l'existence de gradients thermiques est à l'origine de flux de vapeur d'eau à travers toute l'épaisseur du manteau neigeux. Il en résulte des transformations physiques des cristaux de neige ainsi que l'entraînement d'espèces chimiques et leur libération dans l'atmosphère. Ces phénomènes sont englobés sous le terme de métamorphisme de la neige et sont susceptibles d'affecter les propriétés physiques du manteau neigeux et la composition chimique de l'atmosphère.<br />Pour mieux comprendre l'influence de l'intensité du métamorphisme sur les échanges air/neige, nous avons étudié le métamorphisme en chambre froide, successivement en conditions isothermes et de gradient thermique, ainsi que sur le terrain, au cours d'un hiver complet en Alaska. Nous nous sommes attachés à la mesure de certains paramètres physiques, dont la surface spécifique, variable centrale dans l'étude du manteau neigeux.<br />Nous avons mis en évidence que la cinétique de décroissance de la surface spécifique de la neige, en conditions isothermes et de gradient, suivait une loi logarithmique simple. Nous avons également démontré qu'en conditions isothermes, cette relation découlait de la loi générale du mûrissement d'Ostwald. En conditions non-isothermes, la physique du phénomène étant plus complexe, nous nous sommes résolus à une description empirique de l'évolution de la surface spécifique afin qu'elle puisse être prise en compte dans les modèles d'évolution du manteau neigeux. Cette étude nous a finalement permis d'identifier des interactions complexes entre la neige et le climat.
5

Étude de la décomposition thermique de l'alun d'ammonium‎

Mauss, Francis 16 September 1994 (has links) (PDF)
La décomposition thermique de l'alun d'ammonium permet d'obtenir des alumines alpha de haute pureté. Cette décomposition se déroule en plusieurs étapes: - déshydratation de l'alun d'ammonium hydrate en alun anhydre ; - décomposition de cet alun anhydre en sulfate d'aluminium ; - transformation du sulfate d'aluminium en alumine de transition ; - précipitation de la phase alpha de l'alumine. La décomposition de l'alun dépend fortement de l'environnement gazeux. En particulier la déshydratation de l'alun est influencée par la pression physique dont le rôle est de modifier la diffusion de la vapeur d'eau au sein de l'échantillon. Au cours de la déshydratation, il se forme, selon la pression de vapeur d'eau créée a l'interface réactionnel, deux types d'alun partiellement déshydrate amorphe qui se différencient par leur texture et leur composition. Les conditions de déshydratation jouent un rôle important sur certaines propriétés physico-chimiques des alumines résultantes en modifiant probablement leur concentration en défauts ponctuels ce qui entraine des conséquences au niveau de leur surface spécifique, leur température de transformation gamma-alpha et leur thermoluminescence. Aspect théorique: décomposition des solides, thermodynamique des réactions chimiques diffusion de gaz à travers un solide, texture et structure des solides. Aspect pratique: obtention d'alumine de très haute pureté présentant des propriétés thermoluminescentes intéressantes.
6

Évolution thermique des alumines de transition. Modélisation

Dauzat, Marc 13 October 1989 (has links) (PDF)
Le traitement thermique à 1378 K d'une alumine gamma de haute surface spécifique met en évidence plusieurs phénomènes qui modifient considérablement les caractéristiques structurales et texturales du matériau: une importante chute et surface spécifique connue sous le nom de frittage initial des poudres qui se produit lors de la transformation de l'alumine gamma en alumine delta. Expérimentalement, ce phénomène est fortement influence par la présence de vapeur d'eau, ou, dans certains cas par la pression partielle d'oxygène gazeux; une réorganisation du sous-réseau cationique assimilée a un saut des cations aluminium des sites divalents de la structure spinelle vers les sites trivalents des alumines de transition. Cette transformation permet d'obtenir la phase thêta; une précipitation de la seule forme stable à haute température, la phase alpha ou corindon. Cette transformation survient après des hydroxylation complète du matériau. Ces trois phénomènes sont fortement influences par l'addition de cations étrangers: en fonction de la concentration et des caractéristiques de ces cations ces différents phénomènes peuvent être soit ralentis soit accélérés.
7

Évolution texturale d'oxydes divisés de titane et de cérium en présence de chlorure d'hydrogène‎. Modélisation

Gruy, Frédéric 25 November 1991 (has links) (PDF)
Ce travail a été consacré à l'étude cinétique de la chute de surface spécifique de l'anatase et de la cérine lors de calcinations isothermes en présence de chlorure d'hydrogène, de vapeur d'eau et d'oxygène. Il est montre l'importance de relier le préfrittage de ces oxydes à l'adsorption sur ceux-ci des gaz constituant l'atmosphère de calcination. La modélisation de ces phénomènes, complétée par la caractérisation des solides calcines, a permis de dégager les conclusions suivantes : 1) dans le cas de l'anatase calcinée en présence de chlorure d'hydrogène, la chute de surface spécifique est liée a un grossissement de grain, due principalement à une évolution du type murissement d'Ostwald. Le transport de matière se fait à 690 k par l'intermédiaire de dihydroxydichlorure de titane, espèce volatile instable. L'étape limitante du mécanisme de préfrittage est la formation de ce dernier ; 2) dans le cas de la cérine calcinée a 900 k, la chute de surface spécifique peut être expliquée par l'adsorption dissociative de chlorure d'hydrogène, conjointe a la désorption de chlore, la diffusion superficielle des ions hydroxyles ainsi formes et des ions cérium suivie de la désorption d'eau. L'étape limitante du mécanisme de préfrittage est la fixation du chlorure d'hydrogène, soit, dans les premiers instants son apport impose par la procédure expérimentale, puis l'adsorption elle-même.
8

Effet stabilisant de cations sur l'évolution texturale d'un oxyde de cérium‎. Étude expérimentale et modélisation.

Prin, Marie 07 June 1991 (has links) (PDF)
Ce travail a pour objet la stabilisation texturale d'une poudre de dioxyde de cérium en vue d'une utilisation en tant que support de catalyseur. Deux processus de pré frittage de cet oxyde ont pu être identifiés et étudiés séparément : La pente de surface microporeuse et le grossissement des cristallites. Pour chacun de ces deux processus, l'effet de la composition de l'atmosphère gazeux a été mis en évidence : La vapeur d'eau accélérant la disparition des micropores, l'oxygène ralentissant le grossissement des cristallites. Nous avons montré qu'à partir de la vitesse absolue, il est possible de déterminer une vitesse spécifique expérimentale, c'est-à-dire ne dépendant que des paramètres physico-chimiques, et de la comparer à une vitesse spécifique théorique déduite d'un modèle cinétique. L'addition de dopants dans la cérine a pour effet de modifier les vitesses de chacun des deux processus de chute de surface sans toutefois introduire de nouveaux phénomènes. La modélisation du grossissement des cristallites tient compte de ces ajouts par l'intervention de nouveaux défauts constitues par le cation étranger en substitution, associe ou non aux lacunes d'oxygène et aux électrons de l'oxyde.
9

Mesure, analyse et modélisation des processus physiques du manteau neigeux sec

Carmagnola, Carlo Maria 22 November 2013 (has links) (PDF)
La neige est un matériau poreux dont la microstructure change en permanence. L'ensemble de ces transformations, qui prend le nom de ''métamorphisme", est susceptible d'affecter les propriétés thermiques, mécaniques et électromagnétiques de la neige au niveau macroscopique. En particulier, les échanges d'énergie et de matière à l'intérieur du manteau neigeux et entre la neige et l'atmosphère sont fortement influencés par l'évolution au cours du temps de la microstructure de la neige. Une représentation adéquate du métamorphisme dans les modèles de manteau neigeux s'avère donc cruciale. La microstructure d'un matériau poreux peut être raisonnablement décrite en se servant d'un nombre réduit de variables. En effet, la masse volumique, la surface spécifique (SSA) et la distribution de courbure permettent de caractériser la microstructure d'un matériau. Cependant, dans le cas de la neige cette approche n'en est qu'à ses débuts et n'a pas encore été appliquée de façon systématique. Des variables semi-empiriques, difficiles à mesurer et dépourvues de lien direct avec d'autres propriétés physiques, sont encore largement utilisées dans les modèles détaillés de manteau neigeux. Ce travail de thèse s'inscrit dans cette tentative de représenter la microstructure de la neige au cours du temps à l'aide de variables bien définies et mesurables sur le terrain. Parmi ces variables, nous nous sommes attachés notamment à la SSA, qui constitue une grandeur essentielle pour l'étude du manteau neigeux et de son évolution temporelle. Différentes lois d'évolution de la SSA ont été étudiées, à partir de relations empiriques basées sur des ajustements de données expérimentales jusqu'aux modèles physiques qui représentent le flux de la vapeur d'eau entre les grains de neige. Ces lois ont été dans un premier temps testées à l'aide d'un modèle simplifié de manteau neigeux et puis introduites directement dans le modèle SURFEX/ISBA-Crocus. Pour ce faire, la SSA dans Crocus a été transformée en variable prognostique, en remplaçant d'autres variables semi-empiriques préexistantes. Les différentes formulations de l'évolution temporelle de la SSA ont été comparées à des mesures de terrain, acquises lors de deux campagnes à Summit (Groenland) et au Col de Porte (France). Ces mesures ont été effectuées en utilisant de nouvelles techniques optiques et ont permis d'obtenir un riche jeu de données avec une grande résolution verticale. Les résultats montrent que les différentes formulations sont comparables et reproduisent bien les mesures, avec un écart quadratique moyen entre les valeurs de SSA simulées et observées inférieur à 10 m^2/kg. Enfin, nous avons contribué à faire le pont entre la microstructure de la neige et ses propriétés macroscopiques. En particulier, nous nous sommes intéressés au lien entre, d'une part, la SSA et, d'autre part, les propriétés mécaniques et optiques. Dans le premier cas, nous avons investigué la corrélation entre la SSA et la résistance à l'enfoncement mesurée avec un Snow Micro Pen (SMP). Les résultats encore préliminaires semblent indiquer que la SSA peut être dérivée de la masse volumique et de grandeurs micro-mécaniques estimées à partir du signal du SMP avec un modèle statistique. Dans le deuxième cas, nous avons simulé l'albédo de surface à Summit à partir des profils mesurés de masse volumique et de SSA et du contenu en impuretés. Les résultats de cette étude ont démontré que l'albédo spectral peut être correctement simulé à l'aide d'un modèle de transfert radiatif et l'énergie absorbée par le manteau neigeux peut être estimée avec une précision d'environ 1%.
10

Evolution des propriétés physiques de neige de surface sur le plateau Antarctique. Observations et modélisation du transfert radiatif et du métamorphisme / Evolution of snow physical properties on the Antarctic Plateau. Observing and modeling radiative transfer and snow metamorphism

Libois, Quentin 15 October 2014 (has links)
Le bilan d'énergie de surface du Plateau Antarctique est essentiellement contrôlé par les propriétés physiques des premiers centimètres du manteau neigeux. Or l'évolution de cette neige de surface est complexe car elle dépend de processus fondamentalement imbriqués: vitesse de métamorphisme, profils de température, pénétration du rayonnement solaire, précipitations, transport de neige par le vent, etc. L'objectif de ces travaux de thèse est d'étudier ces diverses composantes et leur couplage afin de simuler l'évolution de la densité de la neige et de la taille de grain (surface spécifique) sur le Plateau Antarctique. Pour représenter de manière physique l'absorption de l'énergie solaire à l'intérieur du manteau, un modèle de transfert radiatif à fine résolution spectrale (TARTES) a été implémenté dans le modèle de manteau neigeux détaillé Crocus. TARTES permet de calculer le profil vertical d'absorption d'énergie dans un manteau stratifié dont les caractéristiques sont connues. Parmi elles, la forme des grains, explicitement prise en compte dans TARTES, a été peu étudiée jusqu'à présent. C'est pourquoi une méthode de détermination expérimentale de la forme optique des grains est proposée et appliquée à un grand nombre d'échantillons de neige. Cette méthode, basée sur des mesures optiques, des simulations TARTES, et l'inférence bayésienne, a permis de déterminer la forme la plus adéquate pour simuler les propriétés optiques de la neige, et a mis en évidence le fait que représenter la neige par un ensemble de particules sphériques conduisait à surestimer la profondeur de pénétration du rayonnement d'environ 30%. L'impact de l'absorption en profondeur du rayonnement sur les profils de température dans le manteau et son métamorphisme est ensuite étudié par des approches analytique et numérique, mettant en valeur la sensibilité des profils aux propriétés de la neige proche de la surface. En particulier, la densité de la neige sur les premiers centimètres est cruciale pour le bilan d'énergie du manteau car elle impacte à la fois la profondeur de pénétration du rayonnement et la conductivité thermique du manteau. Puisque le modèle Crocus tient compte de ce couplage entre propriétés optiques et physiques du manteau, il est utilisé pour estimer l'influence des conditions météorologiques sur la variabilité temporelle des propriétés physiques de la neige de surface à Dôme C. Ces simulations sont évaluées au regard d'un jeu de données collectées lors de missions de terrain et de mesures automatiques de l'albédo spectral et de la pénétration du rayonnement dans la neige. Ces observations mettent en évidence le rôle primordial des précipitations dans les variations rapides de taille de grain en surface et l'existence d'un cycle saisonnier de cette taille de grain. Ces variations sont bien simulées par Crocus lorsque le forçage atmosphérique qui lui est imposé est adéquat. En particulier, l'impact du vent sur l'évolution du manteau est fondamental car il contrôle la densité de surface par le biais du transport de neige. Ce transport est aussi à l'origine de la variabilité spatiale des propriétés de la neige observée à Dôme C. C'est pourquoi une modélisation stochastique de l'érosion et du transport de neige dans Crocus est proposée. En plus d'expliquer la variabilité spatiale de la densité et de la taille de grain, elle permet de reproduire celle de l'accumulation annuelle ainsi que les variations rapides de hauteur de neige liées à des épisodes de vent. Ces travaux ont permis une meilleure représentation des processus physiques qui contrôlent les variations des propriétés de la neige de surface à Dôme C, tout en soulignant le rôle primordial du vent, dont l'impact sur le manteau est particulièrement complexe à simuler. / The surface energy balance of the Antarctic Plateau is mainly governed by the physical properties of the snowpack in the topmost centimeters, whose evolution is driven by intricated processes such as: snow metamorphism, temperature profiles variations, solar radiation penetration, precipitation, snow drift, etc. This thesis focuses on the interactions between all these components and aims at simulating the evolution of snow density and snow grain size (specific surface area) on the Antarctic Plateau. To physically model the absorption of solar radiation within the snowpack, a radiative transfer model with high spectral resolution (TARTES) is implemented in the detailed snowpack model Crocus. TARTES calculates the vertical profile of absorbed radiation in a layered snowpack whose characteristics are given. These characteristics include snow grain shape, a parameter that has been seldom studied. For this reason, an experimental method to estimate the optical grain shape is proposed and applied to a large number of snow samples. This method, which combines optical measurements, TARTES simulations and Bayesian inference, is used to estimate the optimal shape to be used in snow optical models. In addition, it highlights that representing snow as a collection of spherical particles results in overestimation of the penetration depth of solar radiation. The influence of the penetration of solar radiation on the snow temperature profiles is then investigated with analytical and numerical tools. The results point out the high sensitivity of the temperature profiles to surface snow physical properties. In particular, the density of the topmost centimeters of the snowpack is critical for the energy budget of the snowpack because it impacts both the effective thermal conductivity and the penetration depth of light. To simulate the evolution of snow physical properties at Dome C by taking into account their interdependence with snow optical properties, the model Crocus is used, driven by meteorological data. These simulations are evaluated against a set of data collected during field missions as well as automatic measurements of snow spectral albedo and penetration depth. These observations highlight the influence of weather conditions on the temporal variability of surface snow properties. They show the existence of a slow decrease of snow grain size at the surface during summer. Rapid changes are also observed, essentially due to precipitation. These variations are well simulated by Crocus when forced by an appropriate atmospheric forcing. In particular, the impact of wind on the evolution of the snowpack is crucial because it controls the surface density through snow transport. This transport is also responsible for the spatial variability of snow properties observed at Dome C. That is why a stochastic representation of snow erosion and transport in Crocus is proposed. It explains well the observations of the spatial variability of density and grain size, and reproduces the variability of the annual accumulation as well as rapid changes in snow height resulting from drift events. This study improves our understanding of the physical processes which drive the properties of snow close to the surface on the Antarctic Plateau, and also points out the critical role of wind, the impact of which is very difficult to account for in models yet.

Page generated in 0.4467 seconds