Spelling suggestions: "subject:"dinamica systems"" "subject:"dinamicas systems""
1 |
Aspectos dinâmicos de espalhamento caótico clássico / Dynamical aspects of classical scatteringSchelin, Adriane Beatriz 23 April 2009 (has links)
A presente tese analisa diferentes aspectos de sistemas de espalhamento clássico com caos. Espalhamento caótico é uma forma de caos transiente que ocorre em diversos sistemas físicos. Nestes sistemas o espaço de fase é aberto, mas o caos ocorre apenas em uma região restrita do espaço, chamada de região de espalhamento. Os efeitos desta dinâmica apresentam-se em qualquer relação de espalhamento pela presença de conjuntos fractais, que geram hiper-sensibilidade a condições iniciais. Em nosso primeiro trabalho, mostramos que as bifurcações que levam ao caos manifestam-se na Seção de Choque Diferencial (SCD) pela criação de infinitas singularidades arco-íris. Estas singularidades aparecem na forma de cascatas, registrando na SCD todas as transições sofridas pela sela caótica. O segundo trabalho mostra que a introdução de dissipação em sistemas de espalhamento pode limitar a autosimilaridade de conjuntos originalmente fractais. Uma partícula espalhada por potenciais repulsivos encontra regiões não acessíveis, que dependem do valor de sua energia. Estas regiões determinam a estrutura da sela caótica. Com a perda de energia, o cenário de órbitas presas é alterado e, dependendo do valor da dissipação, podem existir nas funções de espalhamento estruturas fractais truncadas. O terceiro estudo aborda a presença de advecção caótica em fluxos sanguíneos. Doenças circulatórias estão geralmente associadas a uma mudança de geometria de artérias ou veias. Essas deformações podem gerar espalhamento caótico das partículas sanguíneas carregadas pelo fluxo. Em nosso trabalho mostramos, a partir de simulações numéricas, que caos pode existir em fluxos sanguíneos e, assim, formar um ciclo no desenvolvimento de anomalias circulatórias. / In this thesis we study different scattering systems with chaos. Chaotic scattering, present in a large variety of physical systems, is a type of transient chaos. While the phase-space of such systems is unbounded, irregular motion occurs only in a bounded area, called the scattering region. Still, any (nontrivial) scattering function relating initial conditions to asymptotic variables contains fractal structures, resulting in a very sharp sensitivity to initial conditions. Our first work shows that bifurcations leading to chaos manifest themselves through an infinitely fine-scale structure of rainbow singularities in the cross section. These singularities appear as cascades, mirroring the bifurcation cascade undergone by the chaotic saddle. The second work shows that the presence of dissipation in scattering systems can limit the auto-similarity of originally fractal structures. Depending on the value of their energy, particles scattered by repulsive potentials find forbidden regions in the space-phase. These regions determinate the structure of the chaotic saddle. With friction, the scenario of trapped orbits changes and, depending on the ammount dissipation, scattering functions follow a truncated fractal structure. Our third study concerns the presence of chaotic advection in blood flows. Typically, circulatory diseases are due to sudden changes on the geometry of vessel walls. These deformations can generate chaotic scattering of blood particles carried by the flow. We show, with numerical simulations, that chaos can occur in blood flows and thus form a hazardous cycle in the further developing of circulatory anomalies.
|
2 |
Dinâmica da interação do sistema imune com uma população de agentes infecciosos. / Dynamics of interaction of the immune system with a population of infectious agents.Claudino, Elder de Souza 11 February 2009 (has links)
In this work we model the interaction of the immune response with a target population. The model consists in a set of two coupled nonlinear differential equations with delay. We show that the stationary solution becomes unstable above a critical delay time of the immune response. We show that, under certain conditions, increasing the delay time induces a series of bifurcations leading to chaos. We obtain the characteristic exponents of this bifurcation and the critical dynamics. / Fundação de Amparo a Pesquisa do Estado de Alagoas / Neste trabalho analisamos um modelo da interação do sistema imune com uma dada população alvo de agentes infecciosos. O modelo é descrito por um conjunto de duas equações diferenciais não-lineares acopladas com retardo. Observamos que as soluções estacionárias tornam-se instáveis acima de um retardo crítico. Mostramos que, sob certas condições, o aumento no retardo induz uma série de bifurcações que levam ao caos. Os expoentes que caracterizam este ponto de bifurcação bem como a dinâmica crítica são obtidos.
|
3 |
Aspectos dinâmicos de espalhamento caótico clássico / Dynamical aspects of classical scatteringAdriane Beatriz Schelin 23 April 2009 (has links)
A presente tese analisa diferentes aspectos de sistemas de espalhamento clássico com caos. Espalhamento caótico é uma forma de caos transiente que ocorre em diversos sistemas físicos. Nestes sistemas o espaço de fase é aberto, mas o caos ocorre apenas em uma região restrita do espaço, chamada de região de espalhamento. Os efeitos desta dinâmica apresentam-se em qualquer relação de espalhamento pela presença de conjuntos fractais, que geram hiper-sensibilidade a condições iniciais. Em nosso primeiro trabalho, mostramos que as bifurcações que levam ao caos manifestam-se na Seção de Choque Diferencial (SCD) pela criação de infinitas singularidades arco-íris. Estas singularidades aparecem na forma de cascatas, registrando na SCD todas as transições sofridas pela sela caótica. O segundo trabalho mostra que a introdução de dissipação em sistemas de espalhamento pode limitar a autosimilaridade de conjuntos originalmente fractais. Uma partícula espalhada por potenciais repulsivos encontra regiões não acessíveis, que dependem do valor de sua energia. Estas regiões determinam a estrutura da sela caótica. Com a perda de energia, o cenário de órbitas presas é alterado e, dependendo do valor da dissipação, podem existir nas funções de espalhamento estruturas fractais truncadas. O terceiro estudo aborda a presença de advecção caótica em fluxos sanguíneos. Doenças circulatórias estão geralmente associadas a uma mudança de geometria de artérias ou veias. Essas deformações podem gerar espalhamento caótico das partículas sanguíneas carregadas pelo fluxo. Em nosso trabalho mostramos, a partir de simulações numéricas, que caos pode existir em fluxos sanguíneos e, assim, formar um ciclo no desenvolvimento de anomalias circulatórias. / In this thesis we study different scattering systems with chaos. Chaotic scattering, present in a large variety of physical systems, is a type of transient chaos. While the phase-space of such systems is unbounded, irregular motion occurs only in a bounded area, called the scattering region. Still, any (nontrivial) scattering function relating initial conditions to asymptotic variables contains fractal structures, resulting in a very sharp sensitivity to initial conditions. Our first work shows that bifurcations leading to chaos manifest themselves through an infinitely fine-scale structure of rainbow singularities in the cross section. These singularities appear as cascades, mirroring the bifurcation cascade undergone by the chaotic saddle. The second work shows that the presence of dissipation in scattering systems can limit the auto-similarity of originally fractal structures. Depending on the value of their energy, particles scattered by repulsive potentials find forbidden regions in the space-phase. These regions determinate the structure of the chaotic saddle. With friction, the scenario of trapped orbits changes and, depending on the ammount dissipation, scattering functions follow a truncated fractal structure. Our third study concerns the presence of chaotic advection in blood flows. Typically, circulatory diseases are due to sudden changes on the geometry of vessel walls. These deformations can generate chaotic scattering of blood particles carried by the flow. We show, with numerical simulations, that chaos can occur in blood flows and thus form a hazardous cycle in the further developing of circulatory anomalies.
|
Page generated in 0.0976 seconds