• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 23
  • 20
  • 12
  • 12
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CP violation in gauge theories and the electric dipole moment of the neutron

Hamzaoui, C. January 1987 (has links)
No description available.
2

Contributions to the search for a neutron EDM

Miranda, P. M. C. January 1987 (has links)
The work described in this thesis was carried out at the Institut Laue Langevin, Grenoble, France as a member of the group searching for the electric dipole moment (EDM) of the neutron. The first chapter is an introduction to ultra-cold neutrons (UCN) and their use in the search for an EDM. In chapter two a description is given of the data acquisition procedure and the data analysis method as well as a discussion of the various sources of spurious EDM signals. The data taken by the author yielded the result I-fe/e = ( -3.7 ± 5.4 )xl0-25 cm, which together' with all the other data previously and subsequently collected on PN5 gives I-fe/e = ( -3.7 ± 5.4 )xlO- 25 cm. The third chapter contains some calculations, based on a simple model of the polarizer's properties, of the time dependence of the polarized UCN density in the apparatus during a data ~cquisition cycle. It. also includes the results of the experiments made in an attempt to determine experimentally the model's parameters. The other two chapters are concerned with the problem of transferring efficiently UCN from the 0.6 K volume of the 4He superthermal source to thf! 300 K EDM apparatus without allowing the heat transfer by radiation to overload the source's refrigerator. The possibility of using metal coated polypropylene windows to achieve this aim is investigated in the fourth chapter. In chapter five the infra-red transmission of the stainless steel neutron guides is estimated by calculation and then determined experimentally with a view to using lengths of cold guides to attenuate the radiation heat transfer from the apparatus to the source.
3

Generation of Dielectrophoretic Force under Uniform Electric Field

Kua, C.H., Yang, C., Goh, S., Isabel, R., Youcef-Toumi, Kamal, Lam, Yee Cheong 01 1900 (has links)
Effective dipole moment method has been widely accepted as the de facto technique in predicting the dielectrophoretic force due to the non-uniform electric field. In this method, a finite-particle is modeled as an equivalent point-dipole that would induce a same electric field under the external electric field. This approach is only valid when the particle size is significantly smaller than the characteristic length of interest. This assumption is often violated in a microfluidic device, where the thickness or width of the microchannel can be as small as the particle. It is shown in this numerical study that when the dimensions of the particle were in the same order of magnitude as the characteristic length of the device, dielectrophoretic force can be induced even in a uniform electric field. This force arises due to the disturbance of the particle and the bounding wall. / Singapore-MIT Alliance (SMA)
4

A high precision comparison of the gyromagnetic ratios of the '1'9'9Hg atom and the neutron

May, Daniel John Robert January 1999 (has links)
No description available.
5

Magnetometery for cryoEDM

McCann, Michael Andrew January 2012 (has links)
The existence of the matter in the universe is still an unsolved puzzle. After the Big Bang, both matter and antimatter should have been created in equal amounts, and subsequently annihilated. The leading theories to explain the existence of matter require an imbalance in the production of matter and antimatter in the early universe. This in turn requires CP violation, an asymmetry of the laws of physics between matter and antimatter. cryoEDM is designed to explore the total amount of CP violation and resolve this issue. cryoEDM is a next-generation neutron electric dipole moment search in a commissioning phase of development at the Institut Laue-Langevin, Grenoble. A critical requirement of EDM searches is knowledge of the magnetic environment. This work is concerned with the development, implementation, and performance of the currently operating magnetometry system based on SQUID magnetometers. An analysis scheme to provide magnetometry data over the volume occupied by the neutrons, from measurements using the available magnetometers, is developed. An updated method to calibrate the magnetometers using internal sources of magnetic fields is presented, and found to give good agreement with independent measurements. A new method of calibration using the neutrons as a reference is discussed, and tests on an example arrangement are shown to be promising. Algorithms for detecting and correcting for hardware induced artefacts in the data are produced, and demonstrated to reconstruct the field with good agreement in all but the noisiest environments. A software framework is developed to combine these into a real-time analysis that provides feedback and diagnostics to the experiment. Using this new system the resolution of the magnetometers installed in cryoEDM is found to be limited by the environmental noise, and would give a false EDM signal that is greater than the statistical uncertainty in neutron counting. However, the resolution has been somewhat artificially limited to reduce the susceptibility to the RF interference present. This still allows the magnetometry to act as a useful diagnostic tool on any issues in the current magnetic environment, even if in a sub-optimal configuration. For example, investigation of the magnetic shielding of the experiment finds a reduction in the shielding relative to the design, a situation which is being addressed with the design of additional shielding. Once this shielding is installed the resolution of the magnetometers will improve as well as the slew rate of the SQUIDs, which is found to be lower than the $47,mu extup{Ts}^{-1}$ required to measure AC fields applied during a measurement. The current system can also determine sources of magnetic perturbations created within the experiment, which will require addressing before a full EDM run can be performed. For example, cryogenic effects are observed to occur approximately hourly causing large shifts in the magnetic field. Also operation of valves controlling the flow of neutrons around the experiment are found to produce both AC magnetic fields from the driving motors, and shifts in the field from their movement. Situations which can be resolved by reexamination of installation and operational procedures.
6

Investigation into Temperature and Size Effects on Behaviors of Water Nanoclusters

Yang, Sheng-Hui 03 August 2006 (has links)
Structure properties of water clusters are investigated in this study by means of molecular dynamics simulations. The oxygen density profile, dipole moment and hydrogen bond properties of water clusters are all examined. The temperature dependence and size dependence of the structure properties are also explored in the present study. Upon the molecular dynamics simulations, the flexible three-centered (F3C) water potential is used to model the inter- and intra-actions of the water molecule. It is found that as the temperature rises, the density of the oxygen and the average number of hydrogen bonds per water molecule will decrease. The effect of cluster size, however, is less significant on the structure properties. The differences between the structural properties for the surface region and those for the interior region of the cluster are also investigated. It is found that as the temperature rises, the average number of hydrogen bonds per water molecule decreases, but the ratio of surface water molecules increases. After comparing the water densities in interior regions and the average number of hydrogen bonds in those regions, we find there is no apparent size effect on water molecules in the interior region, whereas the size of the water cluster has a significant influence on the behavior of water molecules at the surface region.
7

Preliminary Measurements for an Electron EDM Experiment in ThO

Gurevich, Yulia 02 January 2013 (has links)
The ACME collaboration aims to measure the eEDM via Ramsey spectroscopy of a cryogenic beam of ThO molecules in their metastable H state. This thesis describes the launch of this new experimental effort. A set of diode lasers has been built to address all the necessary ThO transitions. The laser frequencies were stabilized to a stable reference laser via a \(Fabry-P\acute{e}rot\) transfer cavity. A measurement of the magnetic dipole moment of the H state has been performed that is complementary to a previous measurement by the collaboration. This value is important for determining the sensitivity of the H state to magnetic fields, which can be a source of noise and systematic errors in the eEDM measurement. Experimental efforts to prepare the coherent superposition of the \(M = \pm1\) Zeeman sublevels in the H,J = 1 state that is the starting point of the eEDM experiment using transitions to the G state resulted in a better understanding of transitions between \(\Omega\)-doublet states in an electric field. This led to a new technique for normalizing out shot-to-shot fluctuations in the molecular beam flux, which has also been demonstrated experimentally. / Physics
8

A Ten-Fold Improvement to the Limit of the Electron Electric Dipole Moment

Spaun, Benjamin Norman 06 June 2014 (has links)
The Standard Model of particle physics is wonderfully successful in its predictions but known to be incomplete. It fails to explain the existence of dark matter, and the fact that a universe made of matter survived annihilation with antimatter following the big bang. Extensions to the Standard Model, such as weak-scale Supersymmetry, provide explanations for some of these phenomena by asserting the existence of new particles and new interactions that break symmetry under time-reversal. These theories predict a small, yet potentially measurable electron electric dipole moment (EDM), $d_e$, that also violates time-reversal symmetry. Here, we report a new measurement of the electron EDM in the polar molecule thorium monoxide (ThO): $d_e = -2.1 \pm 3.7stat \pm 2.5syst x 10-29$ e cm, which corresponds to an upper limit of $|d_e| <8.7 x 10-29$ e cm with 90 \% confidence. This is more than an order of magnitude improvement in sensitivity compared to the previous limit. This result sets strong constraints on new physics at an energy scale (TeV) at least as high as that directly probed by the Large Hadron Collider. The unprecedented precision of this EDM measurement was achieved by using the high effective electric field within ThO to greatly magnify the EDM signal. Valence electrons travel relativistically near the heavy thorium nucleus and experience an effective electric field of about 100 GV/cm, millions of times larger than any static laboratory field. The reported measurement is a combination of millions of separate EDM measurements performed with billions of ThO molecules in a cold, slow buffer gas beam. Other features of ThO, such as a near-zero magnetic moment and high electric polarizability, allow potential systematic errors to be drastically suppressed and ensure the accuracy of our measurement. / Physics
9

Magnetic Field Monitoring in the SNS Neutron EDM Experiment

Aleksandrova, Alina 01 January 2019 (has links)
It is a well known fact that the visible universe is made almost entirely of baryonic matter. Yet, this is also one of the greatest puzzles that physicists are trying to solve: Where did all of this matter come from in the first place? The Standard Model (SM) of particle physics predicts a baryon asymmetry that is much smaller than what is observed in nature. In order to try and explain this discrepancy, Sakharov (1967) postulated three necessary conditions for baryogenesis in the early universe. One of these is the requirement that charge conjugation (C) and the product of C and parity (P) symmetries are violated. Because the SM fails to generate the observed baryon asymmetry, additional sources of CP violation are needed in order to help reconcile theory and observation. Thus, physicists have been looking for extensions to the SM in search of an answer. The presence of a neutron Electric Dipole Moment (nEDM) would signal a new source of CP violation. A non-vanishing nEDM would provide evidence for the breaking of both parity (P) and time-reversal symmetry (T). Because CPT symmetry is assumed to be conserved and has not been found to be broken, this would signal CP violation. To look for an nEDM, stored ultracold neutrons are placed in parallel and anti-parallel magnetic and electric fields and the Larmor precession frequency is carefully measured. A difference in the precession frequency of the neutrons in the two states of the fields would signal the existence of an nEDM. The current upper limit of the nEDM was set by the RAL-Sussex-ILL collaboration and stands at dn < 3.0x10-26 e cm (90% CL). Currently a new cryogenic apparatus is under construction at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) which aims to reduce the current upper limit by two orders of magnitude. A central problem to all neutron EDM experiments is the generation of a highly uniform and stable magnetic field. Because the suppression of systematic effects that arise from magnetic field nonuniformities and temporal drifts is vital to the success of these experiments, it is important to have the ability to precisely control and monitor the magnetic field gradients inside of the experimental volume. However, it is not always possible to measure the field gradients within the region of interest directly. To remedy this issue in the SNS nEDM experiment, a field monitoring system has been designed and tested that will allow for the reconstruction of the field gradients inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. This document will outline the theoretical framework of our method and present the results of experimental and simulated studies performed and the engineering design for such a field monitoring system.
10

Density Functional Theory Study of Vibrational Spectra: Part 5. Structure, Dipole Moment, and Vibrational Assignment of Azulene

Mole, Susan J., Zhou, Xuefeng, Wardeska, Jeffrey G., Liu, Ruifeng 01 January 1996 (has links)
Density functional theory (DFT) calculations (using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional (BLYP) and Becke's three-parameter hybrid DFT/HF method using Lee-Yang-Parr's correlation functional (B3LYP)) have been carried out to investigate the structure, dipole moment, and vibrational spectrum of azulene. Structural parameters obtained by both BLYP/6-31G* and B3LYP/6-31G* geometry optimization are in good agreement with available experimental data and show clearly the aromatic nature (bond equalization), a property the Hartree-Fock theory fails to describe correctly. The BLYP/6-31G* and B3LYP/6-31G* dipole moments are within experimental uncertainty and are in good agreement with results obtained from the much more expensive MP2 and MR-SDCI calculations. Most of the BLYP/6-31G* vibrational frequencies are in excellent agreement with available experimental assignments. On the basis of the calculated results, assignments of some missing frequencies in the experimental studies are proposed.

Page generated in 0.054 seconds