Spelling suggestions: "subject:"dipterix"" "subject:"diptera""
1 |
Immune evolution in the Immigrans-Tripunctata clade of DrosophilaHanson, Mark 21 December 2015 (has links)
Drosophila melanogaster has been integral to unravelling the mechanisms of animalian immunity. Diverse species of Drosophila with sequenced genomes have been used to characterize how immune systems respond to natural selection. However, Drosophila is an incredibly speciose lineage, especially so in the subgenus Drosophila. Of the 12 genomes sequenced in 2007, ushering in the era of Drosophila comparative genomics, only three were subgenus Drosophila flies, and none were from the lesser- characterized Immigrans-Tripunctata clade. Recently, multiple Immigrans-Tripunctata clade Drosophila have been sequenced, including the transcriptome of Drosophila neotestacea. I investigated the realized immune responses of D. neotestacea to characterize the immune repertoire of this divergent lineage. The signalling pathways of D. neotestacea were largely conserved, though there were interesting patterns of evolution in antimicrobial peptide genes (AMPs). One of these AMPs, a diptericin, was highly dissimilar to diptericins in D. melanogaster, and conserved in other subgenus Drosophila flies. This prompted me to characterize the evolution of the diptericin gene family in Drosophila. I found that Drosophila diptericins have evolved under positive selection, and display intriguing differences in net charge to well-conserved diptericin domains. I assessed the expression profile of this divergent D. neotestacea diptericin, and found that it did not respond to Serratia bacterial challenge, unlike diptericin in D. melanogaster. I also highlight a potential novel drosocin-like AMP conserved throughout the subgenus Drosophila. These results agree that signalling pathways are highly conserved in diverse insects, including Drosophila. However seemingly-conserved effectors of the Drosophila immune response (such as AMPs) may have previously unappreciated variation in expression and function. / Graduate / 0718 / 0353 / 0369 / markhans@uvic.ca
|
Page generated in 0.0443 seconds