• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Contribution of Charge Separation in Triplet State Formation in Zinc Dipyrrin Photosensitizers

Dzaye, Irene Yayra 04 May 2020 (has links)
About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and natural gas. Solar photocatalysis is one way to potentially generate renewable fuels. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive photochemistry, but their ability to form long-lived triplet excited states needs further investigation. The overall aim of this research is to compare the photophysical properties zinc and boron dipyrrin complexes and investigate the role of the charge separated state in triplet state formation. This presentation will describe the synthesis and purification of zinc and boron dipyrrin complexes and their photophysical characterization, including fluorescence quantum yields in a series of solvents and their emission at low temperatures.
2

Synthesis and Characterization of Zinc(II) Dipyrrin Photosensitizers

Alqahtani, Norah 01 August 2018 (has links) (PDF)
Photocatalytic carbon dioxide reduction transforms CO2 to useful chemicals and fuels, reducing CO2 emissions and making fossil fuels more renewable. Due to a lack of earthabundant sensitizers, we want to design new earth-abundant sensitizers to go with the many known carbon dioxide reduction catalysts. Zn(II) dipyrrin complexes strongly absorb visible light, but their excited state properties have not been widely studied. To investigate their photophysical properties, two Zn dipyrrin complexes, with and without heavy atoms, were synthesized and characterized by NMR and mass spectrometry. The photophysical properties of the two complexes were measured in polar and non-polar solvents, particularly fluorescence quantum yield and extinction coefficient. Also, through transient absorption spectroscopy, the triplet state quantum yield of both complexes was measures to determine the effect of solvent polarity and heavy atoms on the triplet state formation.
3

Dipyrrin complexes as dyes for dye-sensitised solar cells : a thesis submitted in partial fulfilment of the requirements for the degree of Masters in Science in Chemistry at Massey University, Palmerston North, New Zealand

Smalley, Serena Jade January 2009 (has links)
With increasing concerns of global warming and the impending exhaustion of fossil fuels attention is being turned to renewable sources of energy. The sun supplies 3 x 1024 J per year to the earth which is around 104 times more energy than what the human race consumes. The world’s energy needs would be satisfied if a mere 0.1% of the planet’s surface was covered with solar cells(< = 10%)1, causing the conversion of solar energy (sunlight) into electricity to represent a very practical renewable source. Past research into solar energy has produced a photovoltaic device, which when coupled with highly coloured coordination compounds, enables this conversion. This device is known as a dye-sensitised solar cell (DSSC). Further research has been conducted into the properties of the dyes, and has shown that highly coloured coordination compounds are able to convert solar energy into electrical energy with the highest efficiencies. The dominant compounds in this area to date have been Grätzel’s ruthenium complexes and porphyrins. However, there exists a class of smaller compounds called dipyrrins, described most simply as “half a porphyrin”, which possess many of the attractive qualities for DSSC dyes. Although there are no examples of ruthenium-dipyrrin complexes in the literature, the combination of advantageous properties from both components represent very attractive synthetic targets with huge potential as dyes for DSSCs. The objectives of this thesis were firstly to develop a series of dipyrrin complexes which would be suitable as dyes for DSSCs; then to fully characterise the complexes and investigate the spectroscopic properties of each complex; and finally to determine the suitability of the complexes as dyes for DSSCs. These objectives were fully met, resulting in a set of generic target compounds characterised via 1H NMR, 13C NMR, mass spectrometry (ESI-MS), elemental analysis, and x-ray crystallography. From analyses of the UV-visible, fluorescence, emission, and Raman spectra; and electrochemistry results; the complexes were concluded to be suitable as dyes for DSSC’s. An additional bonus is that the syntheses for these complexes are applicable to any dipyrrin, thus aiding future studies into the use of dipyrrins as dyes for DSSC’s. This thesis summarises the findings of the above outlined research project.
4

Investigating the Role of Charge Separation in Triplet State Formation in Zinc Dipyrrin Photosensitizers

Dzaye, Irene Y 01 May 2021 (has links)
About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and natural gas. Solar photocatalysis is one way to potentially generate cheap renewable fuels by harnessing energy from the sun using a photosensitizer and converting it into chemical energy. The efficiency of a photosensitizer depends on its capacity to form a prolonged triplet excited state. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive photochemistry, but their ability to form long-lived triplet excited states still needs extensive research. The overall aim of this research is to probe the role charge separation plays in the formation of triplet state in metal complexes of dipyrrin photosensitizers. The specific objectives are to synthesize and characterize zinc and boron dipyrrin complexes, analyze their photophysical properties—such as steady state spectroscopy, low temperature emission spectroscopy—and quantify their triplet states using time-resolved transient absorption spectroscopy.
5

Investigating The Role of Charge Separation in Triplet State Formation in Zinc Dipyrrin Photosensitizers

Dzaye, Irene Yayra 18 March 2021 (has links)
About 85% of the world’s energy is derived from non-renewable sources—coal, petroleum, and natural gas. Solar photocatalysis is one way to potentially generate cheap renewable fuels by harnessing energy from the sun and converting it into chemical energy. Photosensitizers serve as materials that absorb and store sunlight in the form of chemical energy. The efficiency of a photosensitizer depends on its capacity to form a prolonged triplet excited state. Zinc dipyrrin complexes have the potential to be efficient sensitizers for reductive photochemistry, but their ability to form long-lived triplet excited states still needs extensive research. The overall aim of this research is to probe the role charge separation plays in the formation of triplet state in metal complexes of dipyrrin photosensitizers. The specific objectives are to synthesize and characterize zinc and boron dipyrrin complexes, analyze their photophysical properties—such as steady-state spectroscopy, low-temperature emission spectroscopy—and quantify their triplet states using time-resolved transient absorption spectroscopy.

Page generated in 0.079 seconds