Spelling suggestions: "subject:"dirac semimetal""
1 |
Examining Topological Insulators and Topological Semimetals Using First Principles CalculationsVillanova, John William 30 April 2018 (has links)
The importance and promise that topological materials hold has been recently underscored by the award of the Nobel Prize in Physics in 2016 ``for theoretical discoveries of topological phase transitions and topological phases of matter." This dissertation explores the novel qualities and useful topologically protected surface states of topological insulators and semimetals.
Topological materials have protected qualities which are not removed by weak perturbations. The manifestations of these qualities in topological insulators are spin-momentum-locked surface states, and in Weyl and Dirac semimetals they are unconventional open surface states (Fermi arcs) with anomalous electrical transport properties. There is great promise in utilizing the topologically protected surface states in electronics of the future, including spintronics, quantum computers, and highly sensitive devices. Physicists and chemists are also interested in the fundamental physics and exotic fermions exhibited in topological materials and in heterostructures including them.
Chapter 1 provides an introduction to the concepts and methods of topological band theory. Chapter 2 investigates the spin and spin-orbital texture and electronic structures of the surface states at side surfaces of a topological insulator, Bi2Se3, by using slab models within density functional theory. Two representative, experimentally achieved surfaces are examined, and it is shown that careful consideration of the crystal symmetry is necessary to understand the physics of the surface state Dirac cones at these surfaces. This advances the existing literature by properly taking into account surface relaxation and symmetry beyond what is contained in effective bulk model Hamiltonians.
Chapter 3 examines the Fermi arcs of a topological Dirac semimetal (DSM) in the presence of asymmetric charge transfer, of the kind which would be present in heterostructures. Asymmetric charge transfer allows one to accurately identify the projections of Dirac nodes despite the existence of a band gap and to engineer the properties of the Fermi arcs, including spin texture. Chapter 4 investigates the effect of an external magnetic field applied to a DSM. The breaking of time reversal symmetry splits the Dirac nodes into topologically charged Weyl nodes which exhibit Fermi arcs as well as conventionally-closed surface states as one varies the chemical potential. / Ph. D. / The importance and promise that topological materials hold has been recently underscored by the award of the Nobel Prize in Physics in 2016 “for theoretical discoveries of topological phase transitions and topological phases of matter.” This dissertation explores the novel qualities and useful topologically protected surface states of topological insulators and semimetals.
Topological materials have protected qualities which are not removed by weak perturbations to the system. The manifestations of these qualities in topological insulators are spin-momentum-locked surface states which can be used to develop spin-polarized currents in electronics. Further, these states have linear dispersion at a special momentum point, called the Dirac cone. Conventionally these surface states form closed loops in momentum space. But in two other species of topological materials, Weyl and Dirac semimetals, the surface states form open arcs (called Fermi arcs) and these cause anomalous electrical transport properties including Hall conductivity and Nernst effect. Weyl and Dirac semimetals also have special momentum points (nodes) at which the bulk conduction and valence bands touch with linear dispersion. There is great promise in utilizing the topologically protected surface states in the electronics of the future, including spintronics, quantum computers, and highly sensitive devices. Physicists and chemists are also interested in the fundamental physics and exotic fermions exhibited in topological materials and in heterostructures including them.
Chapter 1 provides an introduction to the concepts and methods of topological band theory. Chapter 2 investigates the spin and spin-orbital texture and electronic structures of the surface states of a topological insulator, Bi₂Se₃, at its side surfaces (beyond the familiar cleaving surface). We use slab models within density functional theory (DFT) to investigate two representative, experimentally achieved surfaces, and it is shown that careful consideration of the threefold rotational crystal symmetry is necessary to understand the physics of the surface state Dirac cones at these surfaces. The differing atomic orbital and cationic/anionic characters of the topological states are examined. This advances the existing literature by properly taking into account how the atoms at the surface relax at the interface with the vacuum and the full symmetry beyond what is contained in effective bulk model Hamiltonians.
Chapter 3 examines the Fermi arcs of a topological Dirac semimetal (DSM) in the presence of asymmetric charge transfer at only one surface, of the kind which would be present in heterostructures comprised of DSMs and topologically-trivial materials. We use a thin slab model within DFT to calculate the electronic structure of the DSM. Asymmetric charge transfer allows one to accurately identify the projections of the linearly dispersing Dirac nodes despite the existence of a bulk band gap and to engineer the properties of the surface Fermi arcs, including their spin texture. Chapter 4 investigates the effect of an external magnetic field applied to a DSM. The breaking of time reversal symmetry splits the Dirac nodes into topologically charged Weyl nodes which exhibit Fermi arcs as well as conventionally-closed surface states as one varies the chemical potential. The topological charge of the Weyl nodes is what makes them, and their Fermi arcs, robust against weak perturbations such as strain. Meticulously determining the topological index, or Chern number, of Fermi surface sheets demonstrates the bulk-boundary correspondence between the Weyl nodes and their Fermi arcs, and provides evidence for the existence of multiple-charge double Weyl nodes which, until now, have only been discussed sparingly in the literature on topological DSMs.
|
2 |
Ab initio simulations of topological phase transitions in Dirac semimetal Cd3As2 doped with Zn and Mn impuritiesRancati, Andrea January 2019 (has links)
In this work we exploit the unique characteristics of a Dirac semimetal material to be symmetry-protected, to investigate dierent topological phase transitions provided by chemical dopings, focusing in particular on the electronic, magnetic and topological properties of the doped systems, studied by the mean of rst-principles methods based on density functional theory (DFT) approach. In particular these doped systems, besides being of interest for investigating the role of topology in solid state physics, could have a great potential for practical application since the dierent topological phases that come along with the chemical dopings allow one to exploit the unique properties of topological materials. The starting point for our study will be the material called cadmium-arsenide (Cd3As2), an example of a topological Dirac semimetal, which is chemically stable at ambient conditions. Chapter I presents a general introduction to topology, especially in condensed matter physics, and to the main physical properties of the topological materials we mentioned. Then, in chapter II, we briey present the methods and the computational tools that we used for our study. In chapter III a more detailed introduction to our work is given, along with a schemetic view of the path we followed, together with the results that we obtained for pristine Cd3As2, which we use as bench mark for our computational methods. Finally, in chapter IV and V, the results for the doped systems are presented and discussed, respectevely for the non-magnetic (IV) and magnetic (V) dopings. Our study has enabled us to discern how doping can give rise to see dierent topological phase transitions. Specically our work shows that dierent realizations of non-magnetic doping gives rise to dierent topological phases: the topological Weyl semimetal phase, which is of great interest since it can support a robust quantum spin Hall eect, and a very special mixed Dirac + Weyl phase, where surprisingly both a Dirac and a Weyl phase can coexist in the same system. Furthermore, magnetically doped systems show the emergence of a magnetic Weyl phase, which can support a quantum anomalous Hall eect. Our work can be the starting point for future studies, both theoretical and experimental, in which the unique physical properties we found in the doped Cd3As2 systems can be further investigated, in order to exploit them for practical applications.
|
3 |
Ultra-low Temperature Properties of Correlated MaterialsRadmanesh, Seyed Mohammad Ali 06 August 2018 (has links)
Abstract
After the discovery of topological insulators (TIs), it has come to be widely recognized that topological states of matter can actually be widespread. In this sense, TIs have established a new paradigm about topological materials. Recent years have seen a surge of interest in topological semimetals, which embody two different ways of generalizing the effectively massless electrons to bulk materials. Dirac and, particularly, Weyl semimetals should support several transport and optical phenomena that are still being sought in experiments. A number of promising experimental results indicate superconductivity in members of half-Hesuler semimetals which realize the mixing singlet and triplet pairing symmetry. We now turn to results we got through the work on topological semimetals. This work presents quantum high field transports on Dirac and Weyl topological semimetals including Sr1-yMn1-zSb2 (y, z < 0.1), YbMnBi2 and TaP. In case of Sr1-yMn1-zSb2 (y, z < 0.1), massless relativistic fermion was reported with m* = 0.04-0.05m0. This material presented a ferromagnetic order for in 304 K < T < 565 K, but a canted antiferromagnetic order with a net ferromagnetic component for T < 304 K. These are considered striking features of Dirac fermions For YbMnBi2, we reported the unusual interlayer quantum transport behavior in magnetoresistivity, resulting from the zeroth LL mode observed in this time reversal symmetry breaking type II Weyl semimetal. Also, for Weyl semimetal TaP the measurements probed multiple Fermi pockets, from which nontrivial π Berry phase and Zeeman splitting were extracted. Our ultra-low penetration depth measurements on half-Heuslers YPdBi and TbPdBi revealed a power- law behavior with n= 2.76 ± 0.04 for YPdBi samples and n=2.6 ± 0.3 for TbPdBi sample. We may conclude the exponent n > 2 implies nodless superconducting gap in our samples. Also, we found that despite the increase in magnetic correlations from YPdBi to TbPdBi, superconductivity remains robust in both systems which indicates that AF fluctuations do not play a major role in superconducting mechanism.
|
Page generated in 0.051 seconds