• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Filtering Techniques for Pose Estimation with Applications to Unmanned Air Vehicles

Ready, Bryce Benson 29 November 2012 (has links) (PDF)
This work presents two novel methods of estimating the state of a dynamic system in a Kalman Filtering framework. The first is an application specific method for use with systems performing Visual Odometry in a mostly planar scene. Because a Visual Odometry method inherently provides relative information about the pose of a platform, we use this system as part of the time update in a Kalman Filtering framework, and develop a novel way to propagate the uncertainty of the pose through this time update method. Our initial results show that this method is able to reduce localization error significantly with respect to pure INS time update, limiting drift in our test system to around 30 meters for tens of seconds. The second key contribution of this work is the Manifold EKF, a generalized version of the Extended Kalman Filter which is explicitly designed to estimate manifold-valued states. This filter works for a large number of commonly useful manifolds, and may have applications to other manifolds as well. In our tests, the Manifold EKF demonstrated significant advantages in terms of consistency when compared to other filtering methods. We feel that these promising initial results merit further study of the Manifold EKF, related filters, and their properties.

Page generated in 0.1425 seconds