Spelling suggestions: "subject:"direct methanol full cell"" "subject:"direct methanol fue cell""
1 |
The reduction of methanol crossover in a DMFC through controlled supply of methanolFong, Sheng-jie 18 November 2010 (has links)
To ran a DMFC without methanol crossover is the aim of this study.It is done by supplying fuel no more than what the anode can consume.
The first is to explore the factors that may affect the time constant of vapor feed DMFC. In order to reduce the time constant of current decline, first, we decrease store tank¡¦s space of methanol with different structure of unipolar plate. Second, we reduce the thickness of anode stack and the space above the air bleed valve. Using slide plate instead of air bleed valve can shorten the diffuse distance effectively and reduce the time constant of current rise curve.
The second is to explore the impact of supply of methanol on steady-state current of system. Using air bleed valve, because of its high gas tightness, the utilization rate of methanol can exceed 94% without crossover. It was found that in the slide plant experiment, steady-state current value depends mainly on the pore size of slide plate, and resistance value has nothing to do. However, the resistance value is lower, the time required to reach steady-state current is shorter.
The third is to explore if the performance decay after long time test of steady-state current. It was found that the performance of MEA will decay while the water content of membrane decreased.
|
2 |
Theory Modeling and Analysis of MEA of a Direct Methanol Fuel CellYeh, Yun-hsuan 24 June 2004 (has links)
A theoretical model and numerical simulation of a direct methanol fuel cell (DMFC) is developed to simulate the reaction mechanisms and the cell voltage under several different designing parameters and operational conditions. The results of a numerical simulation include the distributions of the proton current density, the concentration of methanol, the electrochemical reaction rates, the overpotential losses, and the pressures within proton exchange membrane layer, catalyst layer and diffusion layer. In addition, the influence of aforementioned operational conditions on methanol crossover in a direct methanol fuel cell is also investigated. Finally, the results of the model are compared to the results from the experimental work.
The results show that increasing of temperature, pressure and anode catalyst loading can enhance the performance of a direct methanol fuel cell, and the concentration of methanol plays an important role in its performance. The optimal concentration of methanol for a direct methanol fuel cell is about 2M. Methanol crossover can be suppressed by decreasing methanol concentration and increasing thickness of polymer electrolyte membrane (PEM). However, under operating condition of high current density, thick PEM and low methanol concentration will cause large concentration overpotential and ohmic losses, respectively.
|
3 |
The study on the methanol crossover in a DMFCLai, Jhih-jia 09 September 2008 (has links)
In this experiment, we are going to discuss the possibility of zero methanol crossover to the cathode target within the capacity of DMFC electrode and with proper methanol supply.
After various trials, it is found that electrospray can be used to reduce fuel demand. The methanol will be consumed immediately within the electrode capacity. The methanol solution is volatile. As a result, the actual amount of electricity generated will never accord with the input. If we supply the electrode with methanol by direct contact using infusion pump, the volatility will be reduced. The total power generated then accords with the amount of methanol input. Although only low methanol concentration is supported currently, it¡¦s hoped that the crossover problem can be solved completely. In the electrode design, we try to take away the carbon cloth from the anode and leave the catalyst layer. By this way, the methanol is in touch with the catalyst. Such change is good for this experiment.
In our study, following difficulties are found:
(1) Methanol input
(2) The impact of volatility in electrospray
(3) When supplying fuels to the surface of electrode, the reaction size is too small.
More attentions should be paid in the future cell design.
|
4 |
Modeling and optimization of the direct methanol fuel cell system : relating materials properties to system size and performanceBennett, Brenton Edgar 17 February 2012 (has links)
When designing a direct methanol fuel cell and evaluating the appropriateness of new materials, it is helpful to consider the impact of material properties on the performance of a complete system. To some degree, poor fuel utilization and performance losses from methanol crossover and low reactant concentrations can be mitigated by proper system design. In order to facilitate system design, an analytical model is developed to evaluate the methanol and oxygen concentration profiles across the membrane electrode assembly of the direct methanol fuel cell. In the first part of this work, the model is used to determine fuel utilization as a function of the feed concentration, backing layer properties, and membrane properties. A minimum stoichiometric ratio is determined based on maintaining zero-order methanol kinetics, which allows the fuel efficiency to be optimized by controlling these physical properties. The size of system components such as the methanol storage tank and the fuel pump can be estimated based on the minimum methanol flow rate that those components must produce to deliver a specified current; in this way, the system-level benefits of reduced membrane crossover can be evaluated. In the second section, the model is extended by using the Bulter-Volmer equation to describe the anodic and cathodic overpotentials along a single cross-section of the fuel cell. An iterative technique is then used to determine the methanol and oxygen concentration profiles in the flow channels. The model is applied to examine the benefits of new low-crossover membranes and to suggest new design parameters for those membranes. Also, the tradeoff between the power output of the fuel cell stack and the size of system components is examined across a range of methanol and oxygen flow rates. / text
|
5 |
Methanol barrier layers : modified membrane electrode assemblies for the improvement of direct methanol fuel cell performanceChailuecha, Chatkaew January 2016 (has links)
The direct methanol fuel cell (DMFC) performance has been improved via two approaches. The first approach reduces methanol crossover in the membrane electrode assemblies (MEAs) by incorporating a methanol barrier layer onto an anode electrode of the MEA. The second approach increases the triple phase boundaries via the modified morphology of catalyst layers in the MEA. Methanol barrier layers containing a composite layer of Nafion/mordenite (MOR), Nafion/zeolite Y (ZY), Nafion/montmorillonite (MMT) or Nafion/titanate (TN) were distributed onto the anode of an MEA. The performance of these MEAs were tested in a single cell DMFC for temperatures between 30-80 °C and methanol concentrations of 1 M-4 M and compared with a standard MEA to identify changes in power output. At 2 M methanol concentration and 80 °C, the MEAs featuring with Nafion/0.50 wt% MMT and Nafion/0.50 wt% TN delivered higher power densities, 19.76% and 26.60%, respectively, than that of standard MEA. The catalyst morphology has been adjusted by the dilution of catalyst ink to prevent an agglomeration of catalyst particles, resulting in the increased triple phase boundaries which are the phases for electrochemical reactions and for the transportation of electron and proton products. The new-standard MEA presented the best improvement in power density of 81.15% over the conventional counterpart at 80 °C and 2 M methanol concentration. This modified procedure was further utilised for MEAs fabrication. Further investigation has been carried out by the selected Nafion/MMT layer. The MMT loading of 0.25 wt%-1.00 wt% were incorporated onto the barrier layer where the Nafion/0.25 wt% MMT layer illustrated the best performance. This MEA attributed the highest power density of 69.14 mW cm⁻² which is 2.76% higher than 67.23 mW cm⁻² of the new-standard MEA at 80 °C and 2 M methanol concentration. The best improvement in power density, 27.09%, was obtained at low temperature and low methanol concentration of 30 °C and 1 M. The power density was 25.30 mW cm⁻² when compare to 19.91 mW cm⁻² of the new-standard MEA. These results suggest that the methanol barrier layer and the modified morphology of catalyst layer accomplish the aim of improving DMFC performance.
|
6 |
Development of composite binding layer for direct methanol fuel cell applicationSuwatchara, Danu January 2011 (has links)
Novel composite membrane systems have been devised for use in direct methanol fuel cell (DMFC) with the ultimate aim of improving overall fuel cell performance in terms of achievable power density. The composite membrane system takes the form of a multilayered structure composing of commercial Nafion117 membrane and a novel composite binding layer situated between the anode and the membrane. Within the composite binding layer, inorganic filler particles are evenly dispersed throughout the Nafion matrix presenting a barrier that impedes methanol crossover. Through the current research, three novel membrane electrode assemblies (MEA) have been fabricated, each employing the composite binding layer system with different filler. Mass of filler used is kept constant at 0.5 wt% of Nafion117 membrane. When tested in a DMFC system, the first MEA which utilizes hydrogen form mordenite filler particles yields optimum power density of 60 mW/cm2 with the operation at 90°C, 1M methanol fuel concentration. This represents an improvement of 34.7% compared to the standard MEA which do not include the composite binding layer. Silanefunctionalized hydrogen form mordenite filler is used in the second MEA which yields optimum power density of 64 mW/cm2 at 90°C, 1M methanol, outperforming the standard MEA by 42.5%. The third MEA makes use of TS-1 particles as fillers. This yields an optimum performance of 38 mW/cm2 at 90°C, 1M methanol, a 14.3% reduction in performance compared to the standard. Through the results obtained, it can be deduced that the novel composite binding layer presents a valid approach in reducing methanol crossover, however, the nature of filler particles used exerts a great influence on its performance. Therefore, further research is recommended in exploring new filler materials for use within the composite membrane system.
|
7 |
Design, synthesis, and evaluation of new organometallic and polymeric materials for electrochemical applicationsVarnado, Charles Daniel, Jr. 24 October 2014 (has links)
Chemistry / The efforts described in this thesis were bifurcated along two distinct projects, but generally were directed toward the development of new materials to solve outstanding issues in contemporary electrochemical applications. The first project involved the synthesis and application of redox-switchable olefin metathesis catalysts. N-heterocyclic carbenes (NHCs) bearing ferrocene and other redox-active groups were designed, synthesized, and incorporated into model iridium complexes to evaluate their intrinsic electrochemical and steric parameters. Using these complexes, the ability to switch the electron donating ability of the ligands via redox processes was quantified using a variety of electrochemical and spectroscopic techniques. The donicity was either enhanced or attenutated upon reduction or oxidation of the redox-active group, respectively. The magnitude of the change in donicity upon reduction or oxidation did not vary significantly as a function of the proximity of the redox-active group from the metal center. Thus, other factors, including synthetic considerations, sterics, and redox potential requirements, were determined to guide ligand design. Regardless, redox-active NHCs were adapted into ruthenium-based olefin metathesis catalysts and used to gain control control over various ring-opening metathesis polymerizations and ring-closing metathesis reactions. The second project was focused on the development of new basic polymers for acid/base crosslinked proton exchange membranes intended for applications in direct methanol fuel cells. Polymers containing pendant pyridinyl and pyrimidinyl groups were obtained via the post polymerization functionalization of UDEL® poly(sulfone) and then blended with sulfonated poly(ether ether ketone) (SPEEK). Fuel cells containing these blends were found to exhibit reduced methanol crossover, higher open circuit voltages, and higher maximum power densities compared to plain SPEEK. The differences in fuel cell performance were attributed to the basicity and sterics of the pendant N-heterocycles. / text
|
8 |
Synthesis of multi-metallic catalysts for fuel cell applications.Naidoo, Sivapregasen. January 2008 (has links)
<p>The direct methanol fuel cell or DMFC is emerging as a promising alternative energy source for many applications. Developed and developing countries, through research, are fast seeking a cheap and stable supply of energy for an ever-increasing number of energy-consuming portable devices. The research focus is to have DMFCs meeet this need at an affordable cost is problematic. There are means and ways of making this a reality as the DMFC is found to be complementary to secondary batteries when used as a trickle charger, full charger, or in some other hybrid fuel cell combination. The core functioning component is a catalyst containing MEA, where when pure platinum is used, carbon monoxide is the thermodynamic sink and poisons by preventing further reactions at catalytic sites decreasing the life span of the catalyst if the CO is not removed. Research has shown that the bi-functional mechanism of a platinum-ruthenium catalyst is best because methanol dehydrogenates best on platinumand water dehydrogenation is best facilitated on ruthenium. It is also evident that the addition of other metals to that of PtRu/C can make the catalyst more effective and effective and increase the life span even further. In addition to this, my research has attempted to reduce catalyst cost for DMFCs by developing a low-cost manufacturing technique for catalysts, identify potential non-noblel, less expensive metallic systems to form binary, ternary and quarternary catalysts.</p>
|
9 |
The Anode in the Direct Methanol Fuel CellNordlund, Joakim January 2003 (has links)
The direct methanol fuel cell (DMFC) is a very promisingpower source for low power applications. High power and energydensity, low emissions, operation at or near ambientconditions, fast and convenient refuelling and a potentiallyrenewable fuel source are some of the features that makes thefuel cell very promising. However, there are a few problemsthat have to be overcome if we are to see DMFCs in our everydaylife. One of the drawbacks is the low performance of the DMFCanode. In order to make a better anode, knowledge about whatlimits the performance is of vital importance. With theknowledge about the limitations of the anode, the flow field,gas diffusion layer and the morphology of the electrode can bemodified for optimum performance. The aim of this thesis is to elucidate the limiting factorsof the DMFC anode. A secondary goal is to create a model of theperformance, which also has a low computational cost so that itcan be used as a sub model in more complex system models. Toreach the primary goal, to elucidate the limiting factors, amodel has to be set up that describes the most importantphysical principles occurring in the anode. In addition, experiments have to be performed to validatethe model. To reach the secondary goal, the model has to bereduced to a minimum. A visual DMFC has been developed alongwith a methodology to extract two-phase data. This has provento be a very important part of the understanding of thelimiting factors. Models have been developed from a detailedmodel of the active layer to a two-phase model including theentire three-dimensional anode. The results in the thesis show that the microstructure inthe active layer does not limit the performance. Thelimitations are rather caused by the slow oxidation kineticsand, at concentrations lower than 2 M of methanol, the masstransport resistance to and inside the active layer. Theresults also show that the mass transfer of methanol to theactive layer is improved if gas phase is present, especiallyfor higher temperatures since the gas phase then contains moremethanol. It is concluded that the mass transport resistance lower theperformance of a porous DMFC anode at the methanolconcentrations used today. It is also concluded that masstransfer may be improved by making sure that there is gas phasepresent, which can be done by choosing flow distributor and gasdiffusion layer well. Keywords: direct methanol fuel cell, fuel cell, DMFC, anode,model
|
10 |
Studies of the High Performance New-type Carbon Fiber Bipolar Plate Applied to a DMFC StackSu, Feng-chien 14 July 2004 (has links)
The experimental test and analysis of the direct methanol fuel cell (DMFC), which is made with a newly developed heterogeneous composite carbon fiber unipolar/bipolar plate, is performed in our lab. The work from the making of carbon fiber unipolar plate to the design of single-cell DMFC is also included in this study. The experimental work of various control parameters, such as methanol concentration, operating temperature, and the air flow rate, is also conducted in this thesis. The formation of carbon dioxide in anode is inspected during experiment. From a series of experimental test, we have understood the characteristics of DMFC better. The experimental result and experience can also provide the references of the application and development of DMFC in the future.
According to our experiment, we find that the assembling of the new-type unipolar/bipolar plate doesn¡¦t need to use the large compressing force to reduce the contact resistance like those of the traditional unipolar/bipolar plates. The structure of the DMFC stack made with the new carbon fiber unipolar/bipolar plate is simple and weight light. However, the experimental results still show that the factors that affect the performance of the DMFC fuel cell are similar to those with the conventional unipolar/bipolar plates. For example, increasing the reactive temperature of fuel, proper methanol concentration, and proper content of catalyst all can effectively improve the power density of a DMFC.
The structure of the methanol mixture directly stored in the flow channel of the anode is simple. However, the design exists the problems of the crossover of methanol, the stripping of the anode electrode, and the removal of the carbon dioxide. Special attention is needed to overcome and improve those problems in making DMFC stacks. Or the performance of the cell will decline after long period operation.
|
Page generated in 0.0946 seconds