• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FUNDAMENTAL INVESTIGATION OF DIRECT RECYCLING USING CHEMICALLY DELITHIATED CATHODE

Md Sajibul Alam Bhuyan (14231672) 03 February 2023 (has links)
<p>Recycling valuable cathode material from end-of-life (EOL) Li-ion batteries (LIBs) is essential to preserve raw material depletion and environmental sustainability. Direct recycling reclaims the cathode material without jeopardizing its original functional structures and maximizing return values from spent LIBs compared to other regeneration processes. This work employed two chemically delithiated lithium cobalt oxide (LCO) cathodes at different states of health (SOH), which are analogous to the spent cathodes but free of any impurities, to investigate the effectiveness of cathode regeneration. The material and electrochemical properties of both delithiated SOHs were systematically examined and compared to pristine LCO cathode. Further, those model materials were regenerated by a hydrothermal-based approach. The direct cathode regeneration of both low and high SOH cathode samples restored their reversible capacity and cycle performance comparable to pristine LCO cathode. However, the inferior performance observed in higher current density (2C) rate was not comparable to pristine LCO. In addition, the higher resistance of regenerated cathodes is attributed to lower high-rate performance, which was pointed out as the key challenge of the cathode recycling process. This study provides valuable knowledge about the effectiveness of cathode regeneration by investigating how the disordered, lithium-deficient cathode at different SOH from spent EOL batteries are rejuvenated without changing any material and electrochemical functional properties.</p>

Page generated in 0.1104 seconds