• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Directive-based General-purpose GPU Programming

Han, Tian Yi David 19 January 2010 (has links)
Graphics Processing Units (GPUs) have become a competitive accelerator for non-graphics applications, mainly driven by the improvements in GPU programmability. Although the Compute Unified Device Architecture (CUDA) is a simple C-like interface for programming NVIDIA GPUs, porting applications to CUDA remains a challenge to average programmers. In particular, CUDA places on the programmer the burden of packaging GPU code in separate functions, of explicitly managing data transfer between the host and GPU memories, and of manually optimizing the utilization of the GPU memory. We have designed hiCUDA, a high-level directive-based language for CUDA programming. It allows programmers to perform these tedious tasks in a simpler manner, and directly to the sequential code. We have also prototyped a compiler that translates a hiCUDA program to a CUDA program and can handle real-world applications. Experiments using seven standard CUDA benchmarks show that the simplicity hiCUDA provides comes at no expense to performance.
2

Directive-based General-purpose GPU Programming

Han, Tian Yi David 19 January 2010 (has links)
Graphics Processing Units (GPUs) have become a competitive accelerator for non-graphics applications, mainly driven by the improvements in GPU programmability. Although the Compute Unified Device Architecture (CUDA) is a simple C-like interface for programming NVIDIA GPUs, porting applications to CUDA remains a challenge to average programmers. In particular, CUDA places on the programmer the burden of packaging GPU code in separate functions, of explicitly managing data transfer between the host and GPU memories, and of manually optimizing the utilization of the GPU memory. We have designed hiCUDA, a high-level directive-based language for CUDA programming. It allows programmers to perform these tedious tasks in a simpler manner, and directly to the sequential code. We have also prototyped a compiler that translates a hiCUDA program to a CUDA program and can handle real-world applications. Experiments using seven standard CUDA benchmarks show that the simplicity hiCUDA provides comes at no expense to performance.

Page generated in 0.0624 seconds