• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Post-Disaster Recovery: Decision Support for Debris Disposal Operations

Fetter, Gary 07 May 2010 (has links)
Disaster debris cleanup operations are commonly organized into two phases. During the first phase, the objective is to clear debris from evacuation and other important pathways to ensure access to the disaster-affected area. Practically, Phase 1 activities largely consist of pushing fallen trees, vehicles, and other debris blocking streets and highways to the curb. These activities begin immediately once the disaster has passed, with the goal of completion usually within 24 to 72 hours. In Phase 2 of debris removal, which is the focus of this study, completion can take months or years. Activities in this phase include organizing and managing curbside debris collection, reduction, recycling, and disposal operations (FEMA 2007). This dissertation research investigates methods for improving post-disaster debris cleanup operations—one of the most important and costly aspects of the least researched area of disaster operations management (Altay and Green 2006). The first objective is to identify the unique nature of the disaster debris cleanup problem and the important decisions faced by disaster debris coordinators. The second goal is to present three research projects that develop methods for assisting disaster management coordinators with debris cleanup operations. In the first project, which is the topic of Chapter 3, a facility location model is developed for addressing the problem of opening temporary disposal and storage reduction facilities, which are needed to ensure efficient and effective cleanup operations. In the second project, which is the topic of Chapter 4, a multiple objective mixed-integer linear programming model is developed to address the problem of assigning debris cleanup resources across the disaster-affected area at the onset of debris cleanup operations. The third project and the focus of Chapter 5 addresses the problem of equitably controlling ongoing cleanup operations in real-time. A self-balancing CUSUM statistical process control chart is developed to assist disaster management coordinators with equitably allocating cleanup resources as information becomes available in real-time. All of the models in this dissertation are evaluated using data from debris cleanup operations in Chesapeake, Virginia, completed after Hurricane Isabel in 2003. / Ph. D.
2

Disaster Waste Management: a systems approach

Brown, Charlotte Olivia January 2012 (has links)
Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.

Page generated in 0.0509 seconds