• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics

Fredlund, Tobias January 2015 (has links)
This thesis examines meaning-making in three different areas of undergraduate physics: the refraction of light; electric circuits; and, electric potential and electric potential energy. In order to do this, a social semiotic perspective was constituted for the thesis to facilitate the analysis of meaning-making in terms of the semiotic resources that are typically used in the teaching and learning of physics. These semiotic resources include, for example, spoken and written language, diagrams, graphs, mathematical equations, gestures, simulations, laboratory equipment and working practices. The empirical context of the thesis is introductory undergraduate physics where interactive engagement was part of the educational setting. This setting presents a rich data source, which is made up of video- and audio recordings and field notes for examining how semiotic resources affect physics teaching and learning. Theory building is an integral part of the analysis in the thesis, which led to the constitution of a new analytical tool – patterns of disciplinary-relevant aspects. Part of this process then resulted in the development of a new construct, disciplinary affordance, which for a discipline such as physics, refers to the inherent potential of a semiotic resource to provide access to disciplinary knowledge. These two aspects, in turn, led to an exploration of new empirical and theoretical links to the Variation Theory of Learning. The implications of this work for the teaching and learning of physics means that new focus is brought to the physics content (object of learning), the semiotic resources that are used to deal with that content, and how the semiotic resources are used to create patterns of variation within and across the disciplinary-relevant aspects. As such, the thesis provides physics teachers with new and powerful ways to analyze the semiotic resources that get used in efforts to optimize the teaching and learning of physics.
2

Perspectives on the role of digital tools in students' open-ended physics inquiry

Euler, Elias January 2019 (has links)
In this licentiate thesis, I present detailed case studies of students as they make use of simulated digital learning environments to engage with physics phenomena. In doing so, I reveal the moment-to-moment minutiae of physics students’ open-ended inquiry in the presence of two digital tools, namely the sandbox software Algodoo and the PhET simulation My Solar System (both running on an interactive whiteboard). As this is a topic which has yet to receive significant attention in the physics education research community, I employ an interpretivist, case-oriented methodology to illustrate, build, and refine several theoretical perspectives. Notably, I combine the notion of semi-formalisms with the notion of Newtonian modeling, I illustrate how Algodoo can be seen to function as a Papertian microworld, I meaningfully combine the theoretical perspectives of social semiotics and embodied cognition into a single analytic lens, and I reveal the need for a more nuanced taxonomy of students’ embodiment during physics learning activities. Each of the case studies presented in this thesis makes use of conversation analysis in a fine-grained examination of video-recorded, small-group student interactions. Of particular importance to this process is my attention to students’ non-verbal communication via gestures, gaze, body position, haptic-touch, and interactions with the environment. In this way, I bring into focus the multimodally-rich, often informal interactions of students as they deal with physics content. I make visible the ways in which the students (1) make the conceptual connection between the physical world and the formal/mathematical domain of disciplinary physics, (2) make informal and creative use of mathematical representations, and (3) incorporate their bodies to mechanistically reason about physical phenomena. Across each of the cases presented in this thesis, I show how, while using open-ended software on an interactive whiteboard, students can communicate and reason about physics phenomena in unexpectedly fruitful ways.

Page generated in 0.0824 seconds