• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Discrete Fractional Operators and Discrete Fractional Rheological Models

Uyanik, Meltem 01 May 2015 (has links)
This thesis is comprised of two main parts: Monotonicity results on discrete fractional operators and discrete fractional rheological constitutive equations. In the first part of the thesis, we introduce and prove new monotonicity concepts in discrete fractional calculus. In the remainder, we carry previous results about fractional rheological models to the discrete fractional case. The discrete method is expected to provide a better understanding of the concept than the continuous case as this has been the case in the past. In the first chapter, we give brief information about the main results. In the second chapter, we present some fundamental definitions and formulas in discrete fractional calculus. In the third chapter, we introduce two new monotonicity concepts for nonnegative or nonpositive valued functions defined on discrete domains, and then we prove some monotonicity criteria based on the sign of the fractional difference operator of a function. In the fourth chapter, we emphasize the rheological models: We start by giving a brief introduction to rheological models such as Maxwell and Kelvin-Voigt, and then we construct and solve discrete fractional rheological constitutive equations. Finally, we finish this thesis by describing the conclusion and future work.

Page generated in 0.1382 seconds