• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Four-Dimensionally Multiplexed Eight-State Continuous-Variable Quantum Key Distribution Over Turbulent Channels

Qu, Zhen, Djordjevic, Ivan B. 12 1900 (has links)
We experimentally demonstrate an eight-state continuous-variable quantum key distribution (CV-QKD) over atmospheric turbulence channels. The high secret key rate (SKR) is enabled by 4-D multiplexing of 96 channels, i.e., six-channel wavelength-division multiplexing, four-channel orbital angular momentum multiplexing, two-channel polarization multiplexing, and two-channel spatial-position multiplexing. The atmospheric turbulence channel is emulated by a spatial light modulator on which a series of azimuthal phase patterns yielding Andrews' spectrum are recorded. A commercial coherent receiver is implemented at Bob's side, followed by a phase noise cancellation stage, where channel transmittance can be monitored accurately and phase noise can be effectively eliminated. Compared to four-state CV-QKD, eight-state CV-QKD protocol potentially provides a better performance by offering higher SKR, better excess noise tolerance, and longer secure transmission distance. In our proposed CV-QKD system, the minimum transmittances of 0.24 and 0.26 are required for OAM states of 2 (or -2) and 6 (or -6), respectively, to guarantee the secure transmission. A maximum SKR of 3.744 Gb/s is experimentally achievable, while a total SKR of 960 Mb/s can be obtained in case of mean channel transmittances.
2

High-speed continuous-variable quantum key distribution over atmospheric turbulent channels

Qu, Zhen, Djordjevic, Ivan B. 20 February 2017 (has links)
We experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system in the presence of turbulence. The atmospheric turbulence channel is emulated by two spatial light modulators (SLMs) on which two randomly generated azimuthal phase patterns are recorded yielding Andrews' azimuthal phase spectrum. Frequency and phase locking are not required in our system thanks to the proposed digital phase noise cancellation (PNC) stage. Besides, the transmittance fluctuation can be monitored accurately by the DC level in this PNC stage, which is free of post-processing noise. The mean excess noise is measured to be 0.014, and the maximum secret key rate of >20Mbit/s can be obtained with the transmittance of 0.85, while employing the commercial PIN photodetectors.

Page generated in 0.1286 seconds