1 |
The use of bacteriophages as natural biocontrol agents against bacterial pathogensAmeh, Ekwu Mark January 2016 (has links)
Bacteriophages are viruses that specifically infect bacteria. The bactericidal nature of lytic bacteriophages has been exploited by scientists for decades with the hope to utilise them in the fight against bacterial infections and antibiotic resistant bacteria in medical settings. More recently, the potential applications of bacteriophages for biocontrol in the agrifood and environmental sectors have been investigated in an attempt to develop ‘natural’ antimicrobial products. Bacteriophages have a couple of decisive advantages over conventional methods of controlling pathogenic bacteria, such as high host specificity, the ability to self-replicate, and the ability to evolve with their hosts. However, more research is needed to optimise the parameters for phage applications, including the impact of environmental conditions on lysis efficiency, multiplicity of infection, and to significantly minimise the emergence of bacterial resistance to phages. Temperature plays a key role in every biological activity in nature. It is also assumed that temperature has an effect on phage lysis efficiency. A comprehensive study of it and how it affects both the host cells and their corresponding phages is crucial to ensure the efficient removal of bacterial pathogens. In this thesis, temperature (as selected parameter) was investigated to determine its influence on the lysis effectiveness of the three different phages belonging to the family of the Myoviridea that were isolated and purified from a single water sample taken from a brook receiving treated wastewater. We used the multiplicity of infection of 1 in all of our study in this project. Temperature was found to have a significant impact on phage-mediated lysis efficiency. Both the temperature of incubation of the phage-bacteria mixture (incubation temperature) and the temperature history of bacterial hosts were found to have profound effects on plaque sizes as well as plaque numbers. Plaque size and number decreased with increasing temperature. For the phages examined, bacterial lysis was more efficient at 20°C compared to 30 or 37°C. Phages were suggested to be well adapted to the environment where they were isolated from with general implications for use in biological disinfection. Furthermore, the temperature history of the bacteria (prior to phage encounter) was found to have a modulating effect on their susceptibility to lysis. A second part of this study compared the performance of the three phages in regard to bacterial resistance. The emergence of bacterial resistance is a major obstacle to the success of bacteriophages applications. The use of multiple phages is typically recommended and has proven better than the use of a single phage. However, the bestway to perform phage treatment is still very unclear. This study therefore compared simultaneous addition of multiple phages (in form of a cocktail) with the sequential addition of the individual phages at different time points in trying to delay the emergence of bacterial resistance. The data obtained from this work suggest that lysis effectiveness can be adjusted to optimize any treatment goal. For fast initial bacterial clearance the use of a single phage with short time maximal lysis efficiency proved most efficient, while the simultaneous addition of phages in the form of a cocktail was most successful strategy in our study. Addition of selected phages sequentially can be normalized in such a way that is just as effective as a cocktail. A third part of this thesis looked into the susceptibility of bacteria that had undergone sublethal disinfection. We addressed the question whether bacteria subjected to sublethal doses of chlorine and UV are still susceptible to phage-mediated lysis. The chlorine treatments indicated the development of a phage-insensitive phenotype for a critical chlorine dose in the transition zone between live and dead. The remaining live (and culturable) bacteria were shown insensitive to the selected phage. The lowest UV exposure at 2.8 mJ/cm2 eliminated bacteria susceptibility to the phages. This phage- resistant phenotype may have serious consequences for the application of phages on foods or water that have previously undergone a weak disinfection regime.
|
2 |
Innovative Desinfektionsverfahren zur Brauchwassergewinnung in der dezentralen Abwasserbehandlung - Elektrolyse und UV/Elektrolyse-HybridtechnikHaaken, Daniela 24 April 2015 (has links)
According to estimates of the United Nations Environment Programme (UNEP), more than 1.8 billion people will be living in countries or regions with absolute water scarcity by 2025. The pressure on water resources is increased not only in arid and semiarid regions, but also in fast growing megacities around the world as a result of, amongst other factors, the changing nutritional and consumer behavior (rising living standards). Over 90 % of the annual water consumption of the newly industrializing and developing countries in the arid and semiarid climate zone is used for agricultural irrigation to ensure the nutrition of the population. Thus, since the beginning of the 20th century, the planned/controlled reuse of wastewater has developed into a central task of the sustainable water resources management. Wastewater represents a valuable resource in view of its composition (e. g. nutrients P, N for soil fertilizing) and its reliable, weather-independent availability in every household. The establishment of a closed-loop water management can enhance the efficiency of water usage. Therefore, activities in research and development are currently focused on decentralized and semi-centralized concepts, since their structures offer better conditions for the establishment of closed-loop systems and innovations in wastewater technology can be implemented more easily.
In general, the hygienic quality requirements for wastewater reuse are predominantly oriented towards the planned usage. These are, in turn, regulated by thresholds and guidance values, e. g. for faecal indicator bacteria (e. g. faecal coliforms: E. coli), in widely differing norms and legal provisions specific to the respective countries. In Germany since 2005, small wastewater treatment plants can obtain the discharge class +H by the German Institute for Civil Engineering (DIBt: Deutsches Institut für Bautechnik) if secondary effluents contain less than 100 faecal coliforms (E. coli) per 100 mL. This ensures a safe effluent seepage in karst and water protection areas. Due to the infectious risk caused by a multitude of pathogens (bacteria, viruses, worm eggs, protozoa) which are still contained in wastewater after mechanical-biological treatment, specific disinfection methods are indispensable for their satisfactory reduction. Demands on disinfection methods for wastewater reclamation are quite complex. They should be characterized by a high and constant disinfection efficiency at low or moderate formation of disinfection by-products. The reclaimed wastewater should be able to be stored safely. Moreover, the disinfection method should be technically simple, scaleable, space-saving, subjected to low maintenance and realized at moderate investment and operating costs without applying external toxic chemicals. Established methods in decentralized wastewater disinfection are mainly based on membrane and UV technologies. However, these methods are currently working under high operating costs (high maintenance and cleaning efforts). Furthermore, the high investment costs of the membrane filtration are disadvantageous. In addition, both methods do not provide a disinfection residual. Thus, further research is required for the development and testing of alternative disinfection technologies. Against this background, the applicability of the electrolysis and UV/electrolysis hybrid technology for the decentralized wastewater reclamation was investigated and assessed in this dissertation.
Results have shown that the electrochemical disinfection of biologically treated wastewater represents an efficient method at temperatures of > 6 °C, pH values of < 8.5 and DOC con-centrations of < 22 mg L-1. Under these conditions, an E. coli reduction of four log levels was achieved at a concentration of free chlorine ranging from 0.4 mg L-1 to 0.6 mg L-1 and at an after-reaction time of 15...20 min. However, it becomes simultaneously apparent that low temperatures, high pH values and high DOC concentrations are limiting parameters for this disinfection method to reclaim biologically treated wastewater. A high energy consumption of the electrolysis cell equipped with boron-doped diamond (BDD) electrodes (2...2.6 kWh m-3) represents a further unfavourable effect. Moreover, the undesired formation of chlorate (c = 1.3 mg L-1) and perchlorate (c = 18 mg L-1) at BDD electrodes can be considered as critical, since these disinfection by-products are, amongst others, human-toxicologically relevant. The concentration of adsorbable organically bound halogens (AOX) and trihalomethanes (THMs) proved to be marginal to moderate.
Due to the synergistic effect of the combined application of UV irradiation (primary disinfection method) and electrolysis, the disadvantages of the single methods can be compensated. Decisive drawbacks of UV irradiation are photo and dark repair mechanisms of reversibly damaged bacteria. It was observed that the reactivation of reversibly UV-damaged E. coli even occurs at low temperatures (T = 10 °C) and strongly differing pH values (pH = 5.7...8.1) as well as at low light intensities and in darkness to an extent excluding a safe usage and storage of the reclaimed wastewater. The reactivation processes might be lowered by increased UV fluences. However, this is limited by high concentrations of total suspended solids (TSS). In spite of high UV fluences of > 400 J m-1, no complete removal of E. coli bacteria can be achieved at TSS concentrations of > 17 mg L-1. Therefore, it is indispensable to prevent bacterial reactivation caused by photo and dark repair processes. This topic was studied in the current work by electrochemically produced oxidants using an electrolysis cell positioned downstream of the UV unit. Results have shown that photo and dark reactivation were completely prevented by oxidants in a total concentration of 0.5...0.6 mg L-1 at a TSS concentration of 8...11 mg L-1, at pH values ranging from 5.7 to 8.1 and at temperatures ranging from 10 °C to 30 °C (t = 24....72 h). Even at a high TSS concentration of 75 mg L-1, the reactivation of E. coli (ctotal oxidants = 1.8 mg L-1) and, up to a TSS concentration of 32 mg L-1, the reactivation of total coliforms (except E. coli, ctotal oxidants = 1.0 mg L-1) can be prevented at a high initial germ concentration of 2…3 105 per 100 mL. The lowest energy consumption could be observed when mixed oxide electrodes (MOX electrodes) were applied. This result and the fact that no chlorate and perchlorate were observed at MOX electrodes argue for the application of these electrodes in practice.
All in all, the UV/electrolysis hybrid technology represents an energy-efficient method for reclamation of biologically treated wastewater with TSS concentrations ranging from < 11 to 32 mg L-1 (E = 0.17…0.24 kWh m-3, MOX electrodes). Thereby, the reclaimed wastewater meet the hygienic quality requirements for a multitude of reuse categories starting from agricultural irrigation to urban and recreational reuse. Moreover, the requirements of the discharge class +H (100 faecal coliforms (E. coli) per 100 mL) are complied with reliably. The operational stability of the UV/electrolysis hybrid technology should also be ensured within the required maintenance intervals (t > 6 months). The undesired formation of coverings caused by biofouling processes on quartz glass surfaces could be prevented by electrochemically produced oxidants in a total concentration of 1 mg L-1 within an experimental duration of 5.5 months.
However, the application of the UV/electrolysis hybrid technology is limited by increased particle concentrations and faecal loadings (initial E. coli concentration). The resulting enhanced demand of electrochemically produced oxidants for the prevention of bacterial reactivation results in a considerable increase of the electric charge input and energy consumption.
|
Page generated in 0.09 seconds