• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissolution and growth of entrained bubbles when dip coating in a gas under reduced pressure

Benkreira, Hadj, Ikin, J. Bruce January 2010 (has links)
No / This study assesses experimentally the role of gas dissolution in gas entrainment which hitherto has been speculated on but not measured. In this paper, we used dip coating as the model experimental flow and performed the experiments with a dip coater encased in a vacuum chamber in which we admitted various gases. An appropriate choice of gases (air, carbon dioxide and helium) coupled with low pressure conditions from atmospheric down to 75 mbar enables us to test whether gas solubility is a key determinant in gas entrainment. The data presented here track the evolution in time of the size of bubbles of gas entrained in the liquid (silicone oil) which we observed to always occur at a critical speed, immediately after the dynamic wetting line breaks from a straight line into a serrated line with tiny vees the downstream apices of which are the locations from which the bubbles stream out. The results suggest that permeability combining solubility and diffusivity as a single parameter dictates the rate of dissolution when at atmospheric pressure. Helium, despite its comparatively sluggish rate of dissolution/growth into silicone oil was observed to have a more enhanced gas entrainment speed than air and carbon dioxide. Thus, the hypothetical contention from previous work (Miyamoto and Scriven, 1982) that gas can be entrained as a thin film which breaks into bubbles before dynamic wetting failure occurs is not realised, at least not in dip coating. The data presented here reinforce recent work by Benkreira and Ikin (2010) that thin film gas viscosity is the critical factor, over-riding dissolution during gas entrainment. This finding is fundamentally important and new and provides the experimental basis needed to develop and underpin new models for gas entrainment in coating flows.
2

Experimentelle Untersuchung zur Auflösungskinetik von Kaolinit und Montmorillonit in Anwesenheit von Sulfat, Phosphat, Amino- und Carbonsäuren sowie Harnstoff im offenen und geschlossenen System / Experimental study on the dissolution kinetics of kaolinite und montmorillonite in the presence of sulfate, phosphate, amino and carboxylic acids as well as urea in open and closed systems

Hillebrecht, Jens 27 October 2005 (has links)
No description available.

Page generated in 0.1051 seconds