1 |
Distributions of Dissolved Organic Nitrogen and Phosphorus,as well as Degree of Nutrient Consumption in the Taiwan StraitYu, Hsing-Li 30 August 2004 (has links)
The features of upwelled water are cold, salty and nutrient-rich. However, factors such as the air-sea exchanges of heat affect temperature, and freshwater input from rivers, precipitation and evaporation affect salinity. As biologically important elements are mostly in the dissolved inorganic forms in young upwelled waters, and are mostly in the particulate organic forms in old upwelled waters, the aging status of upwelled waters can be expressed as the relative percentages of biologically important elements in the inorganic and organic forms. Further, nutrients may be consumed by biological productivity. For these reasons, we hereby judge upwelling in the Taiwan Strait (TS) between 2000 and 2002 by the Degree of Nutrient Consumption (DNC, DNCC = and DNCX = ¡AX is nitrogen or phosphorus). The value of DNC is low in young upwelled waters but high in old upwelled waters.
In summer, autumn and winter, waters at, or east of, a front in the northeastern Taiwan Strait were affected by the Kuroshio off eastern Taiwan. This front divides the Kuroshio water, the South China Sea (SCS) water that flows through the TS and the Coastal China Current water (in winter). The implications are that not all currents in the Taiwan Strait flow in a northerly direction, even in summer. Because the axis of Kuroshio moved away from eastern Taiwan and upwelling weakened in SCS in 2002, salinity east of the front was fresher, and nutrient and DON were lower in 2002 than 2001. On the other hand, upwelling induced higher DON west of the front.
In August, 2002, the water in the southern TS was higher in temperature, more salty, but nutrient and DON were lower than in 2001 because of weakened upwelling in the SCS, and water that intruded into the TS had a higher percentage of Kuorshio. The trend of upwelling, DNCC,P,N was along the west Penghu Channel from bottom to surface. Rates of temperature, salinity and DNCC,P,N variation were greater during 2001 than in 2002, reflecting slower rate of upwelling in 2002.
|
2 |
Phosphorus might limit the growth of phytoplankton in the South China SeaHwang, Gloria 09 September 2004 (has links)
Abstract
This research was conducted to understand whether phosphorus limits the phytoplankton production in the South China Sea (SCS). In the nutrient enrichment experiments nitrate and phosphate were supplemented to surface sea water and the enhancement of chlorophyll a concentration during incubation was observed. Seasonal field survey was conducted to measure ambient abundance of phosphorus including phosphate (SRP) and dissolve organic phosphorus (DOP), as well as alkaline phosphatase activity (APA) in the nautral sea water in the contiential shelf and basin of the SCS.
Except at the contiential shelf in summer and the mouth of Zhu Jiang River in fall, the nutrient concentration of surface water was low in the SCS. The average¡£NO3+NO2¡¤was 20 nM (fall) - 360 nM (winter ). The average SRP concentration was 16 nM (fall) - 87 nM (winter). The average DOP concentration was 0.08 £gM (summer)- 0.25 £gM (winter). The ¡£NO3+NO2¡¤/ SRP ratio was smaller than the Redfield N/P ratio of 16. The average chlorophyll a concentration (Chl a) was 0.13 £gg l-1 (summer) - 0.48 £gg l-1 (winter). The average concentration of the particlulate organic carbon (POC) was 4.58 £gM (spring) - 8.11 £gM (winter). The average APA was 16 n mol l-1 h-1 (fall) - 87 n mol l-1h-1 (winter). The average of APA/Chl a was 33.94 n mol £gg -1 h-1 (winter) - 97.22 n mol £gg -1 h-1 (spring).
The results of the enrichment experiment show that the phosphorus deficiency was observed on the contiential shelf in the summer of 2001 and at the mouth of Zhu Jiang in the fall of 2002. The common characteristics of the phosphorus deficient regions were low salinity (29.90- 30.87 psu ), high¡£NO3+NO2¡¤(1.31 - 3.01 £gM) , and a ¡£NO3+NO2¡¤/ SRP ratio higher than 16. Chl a increased significantly (p<0.05) by the enrichments of phosphorus. In spring and winter when all regions were N-limited, N enrichment significantly (p<0.05) increased Chl a. In fall, all the contiential shelf region except the mouth of Zhu Jiang River, the slope and basin regions were NP co-limited. The Bashi Strait in summer was also NP co-limited.
P-limitation that was seen in the contiential shelf SCS and at Zhu Jiang River mouth, was probably caused by the influence of river discharge. N/P, SRP or APA were not effective parameters to assess whether marine phytoplankton growth was limited phosphorus, nitrogen or both. In the SCS, the P-limited water masses were, in general, low in salinity, high in¡£NO3+NO2¡¤,Chl a,¡£NO3+NO2¡¤ / Chl a, APA and a N/P ratio higher than 16. The water masses that were N-limited was high in salinity, and low in¡£NO3+NO2¡¤, Chl a,¡£NO3+NO2¡¤/ Chl a and APA, as well as a N/P ratio smaller than 16. The water masses that were nitrogen and phosphorus co-limited were different from the N-limited ones in that they were low in SRP, SRP/Chl a, and DOP. The SRP and DOP concentration in the NP co-limited region were 11 - 28 nM and 0.09 - 0.23
|
3 |
Distribution of Dissolved and Particulate Organic Carbon, Nitrogen and Phosphorus in the South China Sea and the Taiwan StraitLiu, Ching-Lin 24 July 2001 (has links)
Abstract
The South China Sea (SCS) is the largest marginal sea in the world and connects with the East China Sea (ECS) through the Taiwan Strait (TS). This study investigates the distribution and biogeochemical behavior of both particulate and dissolved organic matter in the SCS and the TS based on samples collected on several cruises of the R/V Ocean Researchers I and III. Dissolved inorganic nitrogen and phosphorus (DIN and DIP), particulate organic carbon and nitrogen (POC and PON) as well as dissolved organic nitrogen and phosphorus (DON and DOP) concentrations were determined. Concentrations of DON and DOP in the SCS are in the range of 1.2-9.9 mMN and 0.04-0.21 mMP, respectively. The surface DON concentration is the highest in the northern SCS, whereas it is the lowest in the southern part. The DOP does not show a similar trend. DON and DOP concentrations all decrease with depth but increase slightly near the bottom, perhaps on account of sediment resuspension. Because of the preferential degradation of DOP over DON, the maximum concentration of DOP appears at a shallower depth than that of DON. Approximately 11 % and 2 % of DIN and DIP respectively are attributed to the degradation of DON and DOP above 500 m in the SCS. Concentrations of POC and PON in the SCS are in the range of 1.06-2.84 mMC and 0.07-0.36 mMN, respectively. The distributions of POC and PON show similar patterns with a correlation coefficient of 0.97. The concentrations of these are the highest at the surface layer, decrease with depth, but then increase slightly near the bottom, perhaps again because of resuspension of the bottom sediments. The ratio of PON/POC is 0.138 in the euphotic zone, a value close to the Redfield ratio of 0.15.
In the TS and the adjacent coastal zones, the effect of terrestrial input is obvious and results in higher POC, PON, DON and DOP nearshore. Ranges of these concentrations are 0.06-59.6 mMN, 0.01-1.29 mMP, 3.80-57.1 mMC and 0.19-3.4 mMN, respectively.
There was an attempt to use the one-dimensional diffusion-advection model to estimate the DIN and DIP production rates and the DON and DOP consumption rates over the depth range of 900-2500 m. These values are, respectively, 0.036, 0.006, 0.021 and 0.002 mmol/kg/yr.
|
4 |
Water Contaminants of the Lake Erie WatershedBrooker, Michael R. 24 May 2018 (has links)
No description available.
|
Page generated in 0.0579 seconds