1 |
Estudo da variabilidade genetica atraves de analise de variancia para dados categorizados em amostras não balanceadasSouza, Roberta de 02 August 2018 (has links)
Orientadores: Hildete Prisco Pinheiro, Cibele Queiroz da Silva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-02T18:55:12Z (GMT). No. of bitstreams: 1
Souza_Robertade_M.pdf: 505447 bytes, checksum: a6bcef03248fd6806d13b3e8b0f300b8 (MD5)
Previous issue date: 2002 / Mestrado / Mestre em Estatística
|
2 |
Flutuações em modelos de Curie-Weiss: sistemas clássicos desordenados e quânticos / Fluctuations Models Curie-Weiss Classical Systems Quantum DisorderedJoao Manuel Goncalves Amaro de Matos 23 November 1984 (has links)
São estudadas flutuações de variáveis spin de bloco em alguns modelos de Curie-Weiss. É descrito rigorosamente o comportamento assintótico de suas distribuições de probabilidade no limite termodinâmico, mantendo constante a razão entre o tamanho do sistema e o tamanho do bloco. São considerados o modelo de Ising com campo aleatório e o antiferromagneto diluído. Os seguintes fatos sobre flutuações nestes modelos são provados: a) Elas não são auto-mediantes; b) Fora da criticalidade têm distribuição Gaussiana com contribuições vindas de flutuações térmicas e de flutuações devidas aos parâmetros aleatórios; c) Na criticalidade a sua distribuição e não mais Gaussiana e as flutuações das impurezas dominam as flutuações térmicas. Como sub-produto desta análise mostra-se que as flutuações destes dois modelos não são equivalentes sob o mapeamento que estabelece a sua equivalência termodinâmica. Também é descrita a aplicação do método ao vidro de spin de van Hemmen, sem provas, levando a resultados similares. Finalmente mostra-se que o método é problemático quando aplicado a sistemas quânticos. Embora a sua termodinâmica possa ser bem descrita, aparecem alguns problemas matemáticos, ainda por resolver, no estudo das suas flutuações. / Fluctuations of block spin variables in some Curie-Weiss models are studied. The asymptotic behavior of their probability distributions in the thermodynamic limit is rigorously described, keeping constant the ratio between the size of the system and the size of the block. The Ising model with random field and the dilute antiferromagnet with uniform field are considered. The following facts about fluctuations in these models are proved: a) They are not self-averaging; b) Out of criticality they have a Gaussian distribution with contributions coming both from thermal fluctuations and from those fluctuations due to the random parameters; c) At criticality their distribution is no longer Gaussian and the fluctuation of impurities dominate thermal fluctuations. As a by-product of this analysis, the fluctuations of these two models are shown to be non-equivalent under the mapping which establishes their thermodynamical equivalence. It is also described the application of the method to the van Hemmen spin-glass model, without proofs, leading to similar results. Finally the method is shown to be problematic when applied to quantum systems. Although their thermodynamics can be well described, some mathematical problems, yet to be solved, appear in the study of their fluctuations.
|
3 |
Flutuações em modelos de Curie-Weiss: sistemas clássicos desordenados e quânticos / Fluctuations Models Curie-Weiss Classical Systems Quantum DisorderedMatos, Joao Manuel Goncalves Amaro de 23 November 1984 (has links)
São estudadas flutuações de variáveis spin de bloco em alguns modelos de Curie-Weiss. É descrito rigorosamente o comportamento assintótico de suas distribuições de probabilidade no limite termodinâmico, mantendo constante a razão entre o tamanho do sistema e o tamanho do bloco. São considerados o modelo de Ising com campo aleatório e o antiferromagneto diluído. Os seguintes fatos sobre flutuações nestes modelos são provados: a) Elas não são auto-mediantes; b) Fora da criticalidade têm distribuição Gaussiana com contribuições vindas de flutuações térmicas e de flutuações devidas aos parâmetros aleatórios; c) Na criticalidade a sua distribuição e não mais Gaussiana e as flutuações das impurezas dominam as flutuações térmicas. Como sub-produto desta análise mostra-se que as flutuações destes dois modelos não são equivalentes sob o mapeamento que estabelece a sua equivalência termodinâmica. Também é descrita a aplicação do método ao vidro de spin de van Hemmen, sem provas, levando a resultados similares. Finalmente mostra-se que o método é problemático quando aplicado a sistemas quânticos. Embora a sua termodinâmica possa ser bem descrita, aparecem alguns problemas matemáticos, ainda por resolver, no estudo das suas flutuações. / Fluctuations of block spin variables in some Curie-Weiss models are studied. The asymptotic behavior of their probability distributions in the thermodynamic limit is rigorously described, keeping constant the ratio between the size of the system and the size of the block. The Ising model with random field and the dilute antiferromagnet with uniform field are considered. The following facts about fluctuations in these models are proved: a) They are not self-averaging; b) Out of criticality they have a Gaussian distribution with contributions coming both from thermal fluctuations and from those fluctuations due to the random parameters; c) At criticality their distribution is no longer Gaussian and the fluctuation of impurities dominate thermal fluctuations. As a by-product of this analysis, the fluctuations of these two models are shown to be non-equivalent under the mapping which establishes their thermodynamical equivalence. It is also described the application of the method to the van Hemmen spin-glass model, without proofs, leading to similar results. Finally the method is shown to be problematic when applied to quantum systems. Although their thermodynamics can be well described, some mathematical problems, yet to be solved, appear in the study of their fluctuations.
|
4 |
Extensões do modelo -potência / extension for the alpha-power modelMartinez Florez, Guillermo Domingo 22 June 2011 (has links)
Em analise de dados que apresentam certo grau de assimetria a suposicao que as observações seguem uma distribuição normal, pode resultar ser uma suposição irreal e a aplicação deste modelo pode ocultar características importantes do modelo verdadeiro. Este tipo de situação deu forca á aplicação de modelo assimétricos, destacando-se entre estes a família de distribuições skew-symmetric, desenvolvida por Azzalini (1985). Neste trabalho nos apresentamos uma segunda proposta para a anàlise de dados com presença importante de assimetria e/ou curtose, comparado com a distribuição normal. Nós apresentamos e estudamos algumas propriedades dos modelos alfa-potência e log-alfa-potência, onde também estudamos o problema de estimação, as matrizes de informação observada e esperada de Fisher e o grau do viés dos estimadores mediante alguns processos de simulação. Nós introduzimos um modelo mais estável que o modelo alfa- potência do qual derivamos o caso bimodal desta distribuição e introduzimos os modelos bimodal simêtrico e assimêtrico alfa-potencia. Posteriormente nós estendemos a distribuição alfa-potência para o caso do modelo Birnbaum-Saunders, estudamos as propriedades deste novo modelo, desenvolvemos estimadores para os parametros e propomos estimadores com viés corrigido. Também introduzimos o modelo de regressão alfa-potência para dados censurados e não censurados e para o modelo de regressão log-linear Birnbaum-Saunders; aqui nós derivamos os estimadores dos parâmetros e estudamos algumas técnicas de validação dos modelos. Por ultimo nós fazemos a extensão multivariada do modelo alfa-potência e estudamos alguns processos de estimação dos parâmetros. Para todos os casos estudados apresentam-se ilustrações com dados já analisados previamente com outras suposições de distribuições. / In data analysis where data present certain degree of asymmetry the assunption of normality can result in an unreal situation and the application of this model can hide important caracteristics of the true model. Situations of this type has given strength to the use of asymmetric models with special emphasis on the skew-symmetric distribution developed by Azzalini (1985). In this work we present an alternative for data analysis in the presence of signi¯cant asymmetry or kurtosis, when compared with the normal distribution, as well as other situations that involve such model. We present and study of the properties of the ®-power and log-®-power distributions, where we also study the estimation problem, the observed and expected information matrices and the degree of bias in estimation using simulation procedures. A °exible model version is proposed for the ®-power distribution, following an extension to a bimodal version. Follows next an extension of the Birnbaum-Saunders distribution using the ®-power distribution, where some properties are studied, estimating approaches are developed as well as corrected bias estimator developed. We also develop censored and uncensored regression for the ®-power model and for the log-linear Birnbaum-Saunders regression models, for which model validation techniques are studied. Finally a multivariate extension of the ®-power model is proposed and some estimation procedures are investigated for the model. All the situations investigated were illustrated with data application using data sets previally analysed with other distributions.
|
5 |
Extensões do modelo -potência / extension for the alpha-power modelGuillermo Domingo Martinez Florez 22 June 2011 (has links)
Em analise de dados que apresentam certo grau de assimetria a suposicao que as observações seguem uma distribuição normal, pode resultar ser uma suposição irreal e a aplicação deste modelo pode ocultar características importantes do modelo verdadeiro. Este tipo de situação deu forca á aplicação de modelo assimétricos, destacando-se entre estes a família de distribuições skew-symmetric, desenvolvida por Azzalini (1985). Neste trabalho nos apresentamos uma segunda proposta para a anàlise de dados com presença importante de assimetria e/ou curtose, comparado com a distribuição normal. Nós apresentamos e estudamos algumas propriedades dos modelos alfa-potência e log-alfa-potência, onde também estudamos o problema de estimação, as matrizes de informação observada e esperada de Fisher e o grau do viés dos estimadores mediante alguns processos de simulação. Nós introduzimos um modelo mais estável que o modelo alfa- potência do qual derivamos o caso bimodal desta distribuição e introduzimos os modelos bimodal simêtrico e assimêtrico alfa-potencia. Posteriormente nós estendemos a distribuição alfa-potência para o caso do modelo Birnbaum-Saunders, estudamos as propriedades deste novo modelo, desenvolvemos estimadores para os parametros e propomos estimadores com viés corrigido. Também introduzimos o modelo de regressão alfa-potência para dados censurados e não censurados e para o modelo de regressão log-linear Birnbaum-Saunders; aqui nós derivamos os estimadores dos parâmetros e estudamos algumas técnicas de validação dos modelos. Por ultimo nós fazemos a extensão multivariada do modelo alfa-potência e estudamos alguns processos de estimação dos parâmetros. Para todos os casos estudados apresentam-se ilustrações com dados já analisados previamente com outras suposições de distribuições. / In data analysis where data present certain degree of asymmetry the assunption of normality can result in an unreal situation and the application of this model can hide important caracteristics of the true model. Situations of this type has given strength to the use of asymmetric models with special emphasis on the skew-symmetric distribution developed by Azzalini (1985). In this work we present an alternative for data analysis in the presence of signi¯cant asymmetry or kurtosis, when compared with the normal distribution, as well as other situations that involve such model. We present and study of the properties of the ®-power and log-®-power distributions, where we also study the estimation problem, the observed and expected information matrices and the degree of bias in estimation using simulation procedures. A °exible model version is proposed for the ®-power distribution, following an extension to a bimodal version. Follows next an extension of the Birnbaum-Saunders distribution using the ®-power distribution, where some properties are studied, estimating approaches are developed as well as corrected bias estimator developed. We also develop censored and uncensored regression for the ®-power model and for the log-linear Birnbaum-Saunders regression models, for which model validation techniques are studied. Finally a multivariate extension of the ®-power model is proposed and some estimation procedures are investigated for the model. All the situations investigated were illustrated with data application using data sets previally analysed with other distributions.
|
Page generated in 0.3101 seconds