Spelling suggestions: "subject:"distributed community off practice"" "subject:"distributed community oof practice""
1 |
A Bayesian belief network computational model of social capital in virtual communitiesDaniel Motidyang, Ben Kei 31 July 2007
The notion of social capital (SC) is increasingly used as a framework for describing social issues in terrestrial communities. For more than a decade, researchers use the term to mean the set of trust, institutions, social norms, social networks, and organizations that shape the interactions of actors within a society and that are considered to be useful and assets for communities to prosper both economically and socially. Despite growing popularity of social capital especially, among researchers in the social sciences and the humanities, the concept remains ill-defined and its operation and benefits limited to terrestrial communities. In addition, proponents of social capital often use different approaches to analyze it and each approach has its own limitations. <p>This thesis examines social capital within the context of technology-mediated communities (also known as virtual communities) communities. It presents a computational model of social capital, which serves as a first step in the direction of understanding, formalizing, computing and discussing social capital in virtual communities. The thesis employs an eclectic set of approaches and procedures to explore, analyze, understand and model social capital in two types of virtual communities: virtual learning communities (VLCs) and distributed communities of practice (DCoP). <p>There is an intentional flow to the analysis and the combination of methods described in the thesis. The analysis includes understanding what constitutes social capital in the literature, identifying and isolating variables that are relevant to the context of virtual communities, conducting a series of studies to further empirically examine various components of social capital identified in three kinds of virtual communities and building a computational model. <p>A sensitivity analysis aimed at examining the statistical variability of the individual variables in the model and their effects on the overall level of social capital are conducted and a series of evidence-based scenarios are developed to test and update the model. The result of the model predictions are then used as input to construct a final empirical study aimed at verifying the model.<p>Key findings from the various studies in the thesis indicated that SC is a multi-layered, multivariate, multidimensional, imprecise and ill-defined construct that has emerged from a rather murky swamp of terminology but it is still useful for exploring and understanding social networking issues that can possibly influence our understanding of collaboration and learning in virtual communities. Further, the model predictions and sensitivity analysis suggested that variables such as trust, different forms of awareness, social protocols and the type of the virtual community are all important in discussion of SC in virtual communities but each variable has different level of sensitivity to social capital. <p>The major contributions of the thesis are the detailed exploration of social capital in virtual communities and the use of an integrated set of approaches in studying and modelling it. Further, the Bayesian Belief Network approach applied in the thesis can be extended to model other similar complex online social systems.
|
2 |
A Bayesian belief network computational model of social capital in virtual communitiesDaniel Motidyang, Ben Kei 31 July 2007 (has links)
The notion of social capital (SC) is increasingly used as a framework for describing social issues in terrestrial communities. For more than a decade, researchers use the term to mean the set of trust, institutions, social norms, social networks, and organizations that shape the interactions of actors within a society and that are considered to be useful and assets for communities to prosper both economically and socially. Despite growing popularity of social capital especially, among researchers in the social sciences and the humanities, the concept remains ill-defined and its operation and benefits limited to terrestrial communities. In addition, proponents of social capital often use different approaches to analyze it and each approach has its own limitations. <p>This thesis examines social capital within the context of technology-mediated communities (also known as virtual communities) communities. It presents a computational model of social capital, which serves as a first step in the direction of understanding, formalizing, computing and discussing social capital in virtual communities. The thesis employs an eclectic set of approaches and procedures to explore, analyze, understand and model social capital in two types of virtual communities: virtual learning communities (VLCs) and distributed communities of practice (DCoP). <p>There is an intentional flow to the analysis and the combination of methods described in the thesis. The analysis includes understanding what constitutes social capital in the literature, identifying and isolating variables that are relevant to the context of virtual communities, conducting a series of studies to further empirically examine various components of social capital identified in three kinds of virtual communities and building a computational model. <p>A sensitivity analysis aimed at examining the statistical variability of the individual variables in the model and their effects on the overall level of social capital are conducted and a series of evidence-based scenarios are developed to test and update the model. The result of the model predictions are then used as input to construct a final empirical study aimed at verifying the model.<p>Key findings from the various studies in the thesis indicated that SC is a multi-layered, multivariate, multidimensional, imprecise and ill-defined construct that has emerged from a rather murky swamp of terminology but it is still useful for exploring and understanding social networking issues that can possibly influence our understanding of collaboration and learning in virtual communities. Further, the model predictions and sensitivity analysis suggested that variables such as trust, different forms of awareness, social protocols and the type of the virtual community are all important in discussion of SC in virtual communities but each variable has different level of sensitivity to social capital. <p>The major contributions of the thesis are the detailed exploration of social capital in virtual communities and the use of an integrated set of approaches in studying and modelling it. Further, the Bayesian Belief Network approach applied in the thesis can be extended to model other similar complex online social systems.
|
Page generated in 0.0998 seconds