Spelling suggestions: "subject:"distributed infrastructure""
1 |
Advanced Elastic Platforms for High Throughput Computing on Container-based and Serverless InfrastructuresPérez González, Alfonso María 15 June 2020 (has links)
[ES] El principal objetivo de esta tesis es ofrecer a los usuarios científicos un modo de crear y ejecutar aplicaciones sin servidor (i.e. serverless) altamente paralelas, dirigidas por eventos y orientadas al procesado de datos, tanto en proveedores en la nube públicos (e.g. AWS) como privados (e.g. OpenNebula, OpenStack). Para llevar a cabo dicho objetivo, se han desarrollado e integrado diferentes herramientas que ofrecen una vía para desplegar aplicaciones de computación de altas prestaciones basadas en contenedores, que además pueden beneficiarse de la alta escalabilidad presente en los entornos serverless. Primero se ha creado una herramienta que permite el despliegue de cargas de trabajo genéricas en el proveedor público AWS. Esta herramienta posibilita que se puedan aprovechar las funcionalidades de AWS Lambda (e.g. alta escalabilidad, computación basada en eventos) para el despliegue y la integración de aplicaciones computacionalmente intensivas que usan el modelo de funciones como servicio (FaaS). En segundo lugar se ha desarrollado un modelo de programación de alto rendimiento para el procesado de datos y orientado a eventos que permite a los usuarios desplegar flujos de trabajo como un conjunto de funciones serverless, a la vez que ofrece una gestión transparente de los datos. En tercer lugar, para poder superar los problemas presentes en los proveedores públicos (e.g. tiempo de ejecución limitado), se ha creado una plataforma que facilita el uso del modelo FaaS en infraestructuras privadas. Esta plataforma también puede ser desplegada automáticamente en distintos proveedores públicos de la nube. Finalmente, para comprobar y validar las diferentes herramientas y plataformas desarrolladas, se han probado diferentes casos de uso con interés tanto para investigación como para la empresa. / [CA] El principal objectiu d'aquesta tesi és oferir als usuaris científics una manera de crear i executar aplicacions sense servidor (i.e. serverless) altament paral·leles, dirigides per esdeveniments i orientades al processament de dades, tant en proveïdors en núvol públics (e.g. AWS) com en privats (e.g. OpenNebula, OpenStack). Per a dur a terme aquest objectiu, s'ha desenvolupat e integrat diferents eines que ofereixen una via per desplegar aplicacions de computació d'altes prestacions basades en contenidors, alhora que es poden beneficiar de l'alta escalabilitat present en els entorns serverless. Primerament, s'ha creat una eina que possibilita el desplegament de càrregues de treball genèriques al proveïdor públic en núvol AWS. Aquesta eina permet aprofitar les funcionalitats de AWS Lambda (e.g. alta escalabilitat, computació basada en esdeveniments) per al desplegament i la integració d'aplicacions computacionalment intensives que fan ús del model de funcions com a servei (FaaS). En segon lloc, s'ha desenvolupat un model de programació d'alt rendiment per al processament de dades i orientat a esdeveniments, que permet als usuaris desplegar fluxos de treball com un conjunt de funcions serverless, alhora que ofereix una gestió transparent de les dades. En tercer lloc, per a superar els problemes presents als proveïdors públics (e.g. temps d'execució limitat) s'ha creat una plataforma que permet utilitzar el model FaaS en infraestructures privades. A més, aquesta plataforma pot ser desplegada automàticament en múltiples proveïdors públics en núvol. Finalment, per a comprobar i validar les diferents eines i plataformes dutes a terme, s'han provat diferents casos d'ús amb interès tant per a la recerca com per a l'empresa. / [EN] The main objective of this thesis is to allow scientific users to deploy and execute highly-parallel event-driven file-processing serverless applications both in public (e.g. AWS), and in private (e.g. OpenNebula, OpenStack) cloud infrastructures. To achieve this objective, different tools and platforms are developed and integrated to provide scientific users with a way for deploying High Throughput Computing applications based on containers that can benefit from the high elasticity capabilities of the serverless environments. First, an open-source tool to deploy generic serverless workloads in the AWS public Cloud provider has been created. This tool allows the scientific users to benefit from the features of AWS Lambda (e.g. high scalability, event-driven computing) for the deployment and integration of compute-intensive applications that use the Functions as a Service (FaaS) model. Second, an event-driven file-processing high-throughput programming model has been developed to allow the users deploy generic applications as workflows of functions in serverless architectures, offering transparent data management. Third, in order to overcome the drawbacks of public serverless services such as limited execution time or computing capabilities, an open-source platform to support FaaS for compute-intensive applications in on-premises Clouds was created. The platform can be automatically deployed on multi-Clouds in order to create highly-parallel event-driven file-processing serverless applications. Finally, in order to assess and validate all the developed tools and platforms, several use cases with business and scientific backgrounds have been tested. / Pérez González, AM. (2020). Advanced Elastic Platforms for High Throughput Computing on Container-based and Serverless Infrastructures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/146365
|
2 |
Vers une gestion coopérative des infrastructures virtualisées à large échelle : le cas de l'ordonnancement / Toward cooperative management of large-scale virtualized infrastructures : the case of schedulingQuesnel, Flavien 20 February 2013 (has links)
Les besoins croissants en puissance de calcul sont généralement satisfaits en fédérant de plus en plus d’ordinateurs (ou noeuds) pour former des infrastructures distribuées. La tendance actuelle est d’utiliser la virtualisation système dans ces infrastructures, afin de découpler les logiciels des noeuds sous-jacents en les encapsulant dans des machines virtuelles. Pour gérer efficacement ces infrastructures virtualisées, de nouveaux gestionnaires logiciels ont été mis en place. Ces gestionnaires sont pour la plupart hautement centralisés (les tâches de gestion sont effectuées par un nombre restreint de nœuds dédiés). Cela limite leur capacité à passer à l’échelle, autrement dit à gérer de manière réactive des infrastructures de grande taille, qui sont de plus en plus courantes. Au cours de cette thèse, nous nous sommes intéressés aux façons d’améliorer cet aspect ; l’une d’entre elles consiste à décentraliser le traitement des tâches de gestion, lorsque cela s’avère judicieux. Notre réflexion s’est concentrée plus particulièrement sur l’ordonnancement dynamique des machines virtuelles, pour donner naissance à la proposition DVMS (Distributed Virtual Machine Scheduler). Nous avons mis en œuvre un prototype, que nous avons validé au travers de simulations (notamment via l’outil SimGrid), et d’expériences sur le banc de test Grid’5000. Nous avons pu constater que DVMS se montrait particulièrement réactif pour gérer des infrastructures virtualisées constituées de dizaines de milliers de machines virtuelles réparties sur des milliers de nœuds. Nous nous sommes ensuite penchés sur les perspectives d’extension et d’amélioration de DVMS. L’objectif est de disposer à terme d’un gestionnaire décentralisé complet, objectif qui devrait être atteint au travers de l’initiative Discovery qui fait suite à ces travaux. / The increasing need in computing power has been satisfied by federating more and more computers (called nodes) to build the so-called distributed infrastructures. Over the past few years, system virtualization has been introduced in these infrastructures (the software is decoupled from the hardware by packaging it in virtual machines), which has lead to the development of software managers in charge of operating these virtualized infrastructures. Most of these managers are highly centralized (management tasks are performed by a restricted set of dedicated nodes). As established, this restricts the scalability of managers, in other words their ability to be reactive to manage large-scale infrastructures, that are more and more common. During this Ph.D., we studied how to mitigate these concerns ; one solution is to decentralize the processing of management tasks, when appropriate. Our work focused in particular on the dynamic scheduling of virtual machines, resulting in the DVMS (Distributed Virtual Machine Scheduler) proposal. We implemented a prototype, that was validated by means of simulations (especially with the SimGrid tool) and with experiments on the Grid’5000 test bed. We observed that DVMS was very reactive to schedule tens of thousands of virtual machines distributed over thousands of nodes. We then took an interest in the perspectives to improve and extend DVMS. The final goal is to build a full decentralized manager. This goal should be reached by the Discovery initiative,that will leverage this work.
|
Page generated in 0.1123 seconds