• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local geometric routing algorithms for edge-augmented planar graphs

Wahid, Mohammad Abdul 20 September 2013 (has links)
Given a geometric graph G = (V,E), where V is the set of vertices and E is the set of edges and a source-target pair {s,t} is a subset of V, a local geometric routing algorithm seeks a route from s to t using only local neighborhood relationships. This thesis proposes a local geometric routing algorithm that uses only a single state bit as message overhead and guarantees delivery of messages in three different classes of edge-augmented planar graphs: convex subdivisions, quasi planar convex subdivisions (allow some augmented edges on a spanning convex subdivision) and 2-augmented triangulations (allow some augmented edges on a spanning triangulation). The proposed algorithm is origin oblivious (does not require the knowledge of the origin vertex s) and predecessor oblivious (does not require the knowledge of the predecessor vertex).
2

Local geometric routing algorithms for edge-augmented planar graphs

Wahid, Mohammad Abdul 20 September 2013 (has links)
Given a geometric graph G = (V,E), where V is the set of vertices and E is the set of edges and a source-target pair {s,t} is a subset of V, a local geometric routing algorithm seeks a route from s to t using only local neighborhood relationships. This thesis proposes a local geometric routing algorithm that uses only a single state bit as message overhead and guarantees delivery of messages in three different classes of edge-augmented planar graphs: convex subdivisions, quasi planar convex subdivisions (allow some augmented edges on a spanning convex subdivision) and 2-augmented triangulations (allow some augmented edges on a spanning triangulation). The proposed algorithm is origin oblivious (does not require the knowledge of the origin vertex s) and predecessor oblivious (does not require the knowledge of the predecessor vertex).

Page generated in 0.0753 seconds