• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 2
  • Tagged with
  • 24
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Folding of Bovine Pancreatic Trypsin Inhibitor (BPTI) is Faster using Aromatic Thiols and their Corresponding Disulfides

Marahatta, Ram Prasad 17 November 2017 (has links)
Improvement in the in vitro oxidative folding of disulfide-containing proteins, such as extracellular and pharmaceutically important proteins, is required. Traditional folding methods using small molecule aliphatic thiol and disulfide, such as glutathione (GSH) and glutathione disulfide (GSSG) are slow and low yielding. Small molecule aromatic thiols and disulfides show great potentiality because aromatic thiols have low pKa values, close to the thiol pKa of protein disulfide isomerase (PDI), higher nucleophilicity and good leaving group ability. Our studies showed that thiols with a positively charged group, quaternary ammonium salts (QAS), are better than thiols with negatively charged groups such as phosphonic acid and sulfonic acid for the folding of bovine pancreatic trypsin inhibitor (BPTI). An enhanced folding rate of BPTI was observed when the protein was folded with a redox buffer composed of a QAS thiol and its corresponding disulfide. Quaternary ammonium salt (QAS) thiols and their corresponding disulfides with longer alkyl side chains were synthesized. These QAS thiols and their corresponding disulfides are promising small molecule thiols and disulfides to fold reduced BPTI efficiently because these thiols are more hydrophobic and can enter the core of the protein. Conformational changes of disulfide-containing proteins during oxidative folding influence the folding pathway greatly. We performed the folding of BPTI using targeted molecular dynamics (TMD) simulation and investigated conformational changes along with the folding pathway. Applying a bias force to all atoms versus to only alpha carbons and the sulfur of cysteines showed different folding pathways. The formation of kinetic traps N' and N* was not observed during our simulation applying a bias force to all atoms of the starting structure. The final native conformation was obtained once the correct antiparallel β-sheets and subsequent Cys14-Cys38 distance were decreased to a bond distance level. When bias force was applied to only alpha carbons and the sulfur of cysteines, the distance between Cys14-Cys38 increased and decreased multiple times, a structure similar to the confirmation of N*, NSH were formed and native protein was ultimately obtained. We concluded that there could be multiple pathways of conformational folding which influence oxidative folding.
22

Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

Jason Alan Gruenhagen January 2003 (has links)
Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); 12 Dec 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2604" Jason Alan Gruenhagen. 12/12/2003. Report is also available in paper and microfiche from NTIS.
23

The Coupling Between Folding, Zinc Binding, and Disulfide Bond Status of Human Cu, Zn Superoxide Dismutase: A Dissertation

Kayatekin, Can 15 June 2010 (has links)
Cu, Zn superoxide dismutase (SOD1) is a dimeric, β-sandwich, metalloenzyme responsible for the dismutation of superoxide. Mutations covering nearly 50% of the amino acid sequence of SOD1 have been found to acquire a toxic gain-of-function leading to amyotrophic lateral sclerosis. A hallmark of this disease is the presence of insoluble aggregates containing SOD1 found in the brain and spinal cord. While it is unclear how these aggregates or smaller, precursor oligomeric species may be the source of the toxicity, mutations leading to increased populations of unstable, partially folded species along the folding pathway of SOD1 may be responsible for seeding and propagating aggregation. In an effort to determine the responsible species, we have systematically characterized the stability and folding kinetics of five well studied ALS variants: A4V, L38V, G93A, L106V and S134N. The effect of the amino acid substitutions was determined on a variety of different constructs characterizing the various post-translational maturation steps of SOD1: folding, disulfide bond formation and Zn binding. Zn was found to bind progressively tighter along the folding pathway of SOD1, minimizing populations of monomeric species. In contrast, ALS variants were found to have the greatest perturbation in the equilibrium populations of the folded and unfolded state for the most immature, disulfide-reduced metal-free SOD1. In this species, at physiological temperature, four out of five ALS variants were >50% unfolded. Finally the energetic barriers in the folding and unfolding reaction were studied to investigate the unusually slow folding of SOD1. These results reveal that both unfolding and refolding are dominated by enthalpic barriers which may be explained by the desolvation of the chain and provide insights into the role of sequence in governing the folding pathway and rate.
24

Interplay between 2-oxoglutarate oxygenases and cancer : studies on the aspartyl/asparaginyl-beta-hydroxylase

Pfeffer, Inga January 2014 (has links)
No description available.

Page generated in 0.0306 seconds