• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of protein disulphide isomerase catalyzed disulphide bond formation

Lappi, A.-K. (Anna-Kaisa) 14 September 2010 (has links)
Abstract Protein folding of outer membrane and secreted proteins, including receptors, cytokines and antibodies is often linked to disulphide bond formation. Native disulphide bond formation is complex and is usually the rate limiting step in the folding of such proteins. The enzymes which catalyse the slow steps in disulphide bond formation belong to the protein disulphide isomerase (PDI) family. PDI catalyses formation, reduction and isomerization of newly synthesized disulphide bonds. The mechanisms of action of the PDIs are currently poorly understood and this not only inhibits our understanding of the biogenesis of a range of medically important proteins, and hence associated disease states, but also prevents the effective manipulation of the cellular environment by the biotechnology industry for the production of high value therapeutic proteins. Hence, understanding the mechanism of action of these enzymes is vital for a wide range of medically important processes and therapies. In this study the role of a conserved arginine residue in the catalytic activity of PDI was shown. The movement of this residue into and out of the active site locale of PDI was shown to modulate the pKa of the C-terminal active site cysteine of PDI and by that way to allow the enzyme to act efficiently as catalyst both of oxidation and isomerization reactions. The possible role of hydrogen peroxide produced by sulphydryl oxidases during disulphide bond formation was studied in an oxidative protein refolding assay. Analysis showed that hydrogen peroxide can be used productively to make native disulphide bonds in folding proteins with minimal side reactions. In addition, the kinetics of oxidation and reduction of the <b>a</b> domains of PDI and Pdi1p by glutathione was studied in this thesis. The kinetics obtained with stopped-flow and quenched-flow experiments showed the reactions to be more rapid and complex than previously thought. Significant differences exist between the kinetics of PDI and Pdi1p. This implies that the use of yeast systems to predict physiological roles for mammalian PDI family members should be treated cautiously.
2

Structural and functional studies of mitochondrial small Tim proteins

Guo, Liang January 2013 (has links)
Most mitochondrial proteins are encoded by nuclear DNA, and synthesised in the cytosol, then imported into the different mitochondrial subcompartments. To reach their destination, mitochondrial inner membrane proteins require import across the outer mitochondrial membrane, and through the intermembrane space. This passage through the IMS is assisted by the small Tim proteins. This family is characterised by conserved cysteine residues arranged in a twin CX3C motif. They can form Tim9-Tim10 and Tim8-Tim13 complexes, while Tim12 appears to form part of a Tim9-Tim10-Tim12 complex that is associated with the inner membrane translocase TIM22 complex. Current models suggest that the biogenesis of small Tim proteins and their assembly into complexes is dependent on the redox states of the proteins. However, the role of the conserved cysteine residues, and the disulphide bonds formed by them, in small Tim biogenesis and complex formation is not clear. As there is no research about the structural characterisation of Tim12 and double cysteine mutants of Tim9, purification of these proteins was attempted using different methods. To investigate how cysteine mutants affect complex formation, the purified double cysteine mutants of Tim9 were studied using in vitro methods. It showed that the double cysteine mutants were partially folded, and they can form complexes with Tim10 with low affinities, suggesting disulphide bonds are important for the structures and complex formation of small Tim proteins. The effect of cysteine mutants on mitochondrial function was addressed using in vivo methods. It showed that cysteines of small Tim proteins were not equally essential for cell viability, and growth defect of the lethal cysteine mutant was caused by low level of protein. Thus, the conclusion of this study is that disulphide bond formation is highly important for correct Tim9- Tim10 complex formation, and yeast can survive with low levels of complex, but it results in instability of the individual proteins.

Page generated in 0.1779 seconds