• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The q-division ring, quantum matrices and semi-classical limits

Fryer, Sian January 2014 (has links)
Let k be a field of characteristic zero and q ∈ kx not a root of unity. We may obtain non-commutative counterparts of various commutative algebras by twisting the multiplication using the scalar q: one example of this is the quantum plane kq[x; y], which can be viewed informally as the set of polynomials in two variables subject to the relation xy = qyx. We may also consider the full localization of kq[x; y], which we denote by kq(x; y) or D and view as the non-commutative analogue of k(x; y), and also the quantization Oq(Mn) of the coordinate ring of n x n matrices over k. Our aim in this thesis will be to use the language of deformation-quantization to understand the quantized algebras by looking at certain properties of the commutative ones, and conversely to obtain results about the commutative algebras (upon which a Poisson structure is induced) using existing results for the non-commutative ones. The q-division ring kq(x; y) is of particular interest to us, being one of the easiest infinite-dimensional division rings to define over k. Very little is known about such rings: in particular, it is not known whether its fixed ring under a finite group of automorphisms should always be isomorphic to another q-division ring (possibly for a different value of q) nor whether the left and right indexes of a subring E ? D should always coincide. We define an action of SL2(Z) by k-algebra automorphisms on D and show that the fixed ring of D under any finite group of such automorphisms is isomorphic to D. We also show that D is a deformation of the commutative field k(x; y) with respect to the Poisson bracket fy; xg = yx and that for any finite subgroup G of SL2(Z) the xed ring DG is in turn a deformation of k(x; y)G. Finally, we describe the Poisson structure of the fixed rings k(x; y)G, thus answering the Poisson-Noether question in this case. A number of interesting results can be obtained as a consequence of this: in particular, we are able to answer several open questions posed by Artamonov and Cohn concerning the structure of the automorphism group Aut(D). They ask whether it is possible to define a conjugation automorphism by an element z 2 LnD, where L is a certain overring of D, and whether D admits any endomorphisms which are not bijective. We answer both questions in the affirmative, and show that up to a change of variables these endomorphisms can be represented as non-bijective conjugation maps. We also consider Poisson-prime and Poisson-primitive ideals of the coordinate rings O(GL3) and O(SL3), where the Poisson bracket is induced from the non-commutative multiplication on Oq(GL3) and Oq(SL3) via deformation theory. This relates to one case of a conjecture made by Goodearl, who predicted that there should be a homeomorphism between the primitive (resp. prime) ideals of certain quantum algebras and the Poisson-primitive (resp. Poisson-prime) ideals of their semi-classical limits. We prove that there is a natural bijection from the Poisson-primitive ideals of these rings to the primitive ideals of Oq(GL3) and Oq(SL3), thus laying the groundwork for verifying this conjecture in these cases.
2

Corpos livres em anéis com divisão / Free fields in division rings

Fornaroli, Érica Zancanella 23 October 2007 (has links)
Sejam $D$ um anel com divisão, $K$ um subanel com divisão de $D$ e $X$ um conjunto. O $D$-anel livre sobre $K$ em $X$, $D_K\\langle X angle=D\\underset{\\ast} K \\langle X angle$, possui um corpo universal de frações denominado corpo livre e denotado por $D_K\\X$. Neste trabalho fazemos uma investigação acerca de condições que, quando satisfeitas por um anel com divisão, sejam suficientes para garantir a existência de um subanel isomorfo a algum corpo livre não-comutativo, e também descrevemos famílias de anéis com divisão que satisfazem as condições encontradas. Os anéis com divisão que provamos conter um corpo livre são, em sua maioria, completamentos de corpos de frações de domínios noetherianos com topologia definida por uma valorização. / Let $D$ be a division ring, $K$ a subfield of $D$ and $X$ a set. The $D$-free ring over $K$ on $X$, $D_K\\langle X angle=D\\underset{\\ast} K\\langle X angle$, has an universal field of fractions called a free field and denoted by $D_K\\X$. In this work we look into conditions which, when satisfied by a division ring, are sufficient to guarantee the existence of a subring isomorphic to some non-commutative free field, and we also describe families of division rings which satisfy the conditions that were found. The majority of the division rings that we proved to contain a free field are completions of fields of fractions of Noetherian domains with topology defined by a valuation.
3

Corpos livres em anéis com divisão / Free fields in division rings

Érica Zancanella Fornaroli 23 October 2007 (has links)
Sejam $D$ um anel com divisão, $K$ um subanel com divisão de $D$ e $X$ um conjunto. O $D$-anel livre sobre $K$ em $X$, $D_K\\langle X angle=D\\underset{\\ast} K \\langle X angle$, possui um corpo universal de frações denominado corpo livre e denotado por $D_K\\X$. Neste trabalho fazemos uma investigação acerca de condições que, quando satisfeitas por um anel com divisão, sejam suficientes para garantir a existência de um subanel isomorfo a algum corpo livre não-comutativo, e também descrevemos famílias de anéis com divisão que satisfazem as condições encontradas. Os anéis com divisão que provamos conter um corpo livre são, em sua maioria, completamentos de corpos de frações de domínios noetherianos com topologia definida por uma valorização. / Let $D$ be a division ring, $K$ a subfield of $D$ and $X$ a set. The $D$-free ring over $K$ on $X$, $D_K\\langle X angle=D\\underset{\\ast} K\\langle X angle$, has an universal field of fractions called a free field and denoted by $D_K\\X$. In this work we look into conditions which, when satisfied by a division ring, are sufficient to guarantee the existence of a subring isomorphic to some non-commutative free field, and we also describe families of division rings which satisfy the conditions that were found. The majority of the division rings that we proved to contain a free field are completions of fields of fractions of Noetherian domains with topology defined by a valuation.

Page generated in 0.0676 seconds