• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian Off-policy Sim-to-Real Transfer for Antenna Tilt Optimization

Larsson Forsberg, Albin January 2021 (has links)
Choosing the correct angle of electrical tilt in a radio base station is essential when optimizing for coverage and capacity. A reinforcement learning agent can be trained to make this choice. If the training of the agent in the real world is restricted or even impossible, alternative methods can be used. Training in simulation combined with an approximation of the real world is one option that comes with a set of challenges associated with the reality gap. In this thesis, a method based on Bayesian optimization is implemented to tune the environment in which domain randomization is performed to improve the quality of the simulation training. The results show that using Bayesian optimization to find a good subset of parameters works even when access to the real world is constrained. Two off- policy estimators based on inverse propensity scoring and direct method evaluation in combination with an offline dataset of previously collected cell traces were tested. The method manages to find an isolated subspace of the whole domain that optimizes the randomization while still giving good performance in the target domain. / Rätt val av elektrisk antennvinkel för en radiobasstation är avgörande när täckning och kapacitetsoptimering (eng. coverage and capacity optimization) görs för en förstärkningsinlärningsagent. Om träning av agenten i verkligheten är besvärlig eller till och med omöjlig att genomföra kan olika alternativa metoder användas. Simuleringsträning kombinerad med en skattningsmodell av verkligheten är ett alternativ som har olika utmaningar kopplade till klyftan mellan simulering och verkligheten (eng. reality gap). I denna avhandling implementeras en lösning baserad på Bayesiansk Optimering med syftet att anpassa miljön som domänrandomisering sker i för att förbättra kvaliteten på simuleringsträningen. Resultatet visar att Bayesiansk Optimering kan användas för att hitta ett urval av fungerande parametrar även när tillgången till den faktiska verkligheten är begränsad. Två skattningsmodeller baserade på invers propensitetsviktning och direktmetodutvärdering i kombination med ett tidigare insamlat dataset av nätverksdata testades. Den tillämpade metoden lyckas hitta ett isolerat delrum av parameterrymden som optimerar randomiseringen samtidigt som prestationen i verkligheten hålls på en god nivå.

Page generated in 0.0652 seconds