• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cerebral asymmetries of the Chinese of Hong Kong.

January 1995 (has links)
by Diana Robertson-Dunn. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 123-132). / Bibliography --- p.viii / Summary --- p.ix / List of Tables --- p.xi / List of Figures --- p.xi / Chapter Chapter One --- Introduction / Chapter 1.1. --- Cerebral asymmetry --- p.1 / Chapter 1.2. --- Functional asymmetry / Chapter 1.2.1. --- Cerebral dominance and laterality --- p.2 / Chapter 1.2.2. --- Speech --- p.2 / Chapter 1.2.3. --- Handedness --- p.3 / Chapter 1.3. --- Morphological asymmetry --- p.4 / Chapter Chapter Two --- Literature review and aim of the research / Chapter 2.1. --- Scope of the literature search --- p.6 / Chapter 2.2. --- Asymmetries of the cerebral hemispheres / Chapter 2.2.1. --- Introduction --- p.6 / Chapter 2.2.2. --- Weight assessments at post-mortem --- p.6 / Chapter 2.2.3. --- Volume assessments at post-mortem --- p.7 / Chapter 2.2.4. --- Volume assessments from CT and MR images --- p.8 / Chapter 2.2.5. --- Summary --- p.11 / Chapter 2.3. --- Asymmetries of the temporal lobes and the Sylvian fissures / Chapter 2.3.1. --- Introduction --- p.12 / Chapter 2.3.2. --- Asymmetries identified at post-mortem --- p.12 / Chapter 2.3.3. --- Asymmetries identified from arteriograms --- p.17 / Chapter 2.3.4. --- Asymmetries identified on CT and MR images --- p.18 / Chapter 2.3.5. --- Summary --- p.21 / Chapter 2.4. --- Asymmetries of the occipital and frontal lobes / Chapter 2.4.1. --- Introduction --- p.22 / Chapter 2.4.2. --- Asymmetry of the occipital lobes --- p.22 / Chapter 2.4.3. --- Asymmetry of the frontal lobes --- p.24 / Chapter 2.4.4. --- Asymmetries of both occipital and frontal lobes in vitro --- p.26 / Chapter 2.4.5. --- Asymmetries of both occipital and frontal lobes in vivo --- p.28 / Chapter 2.4.6. --- Summary --- p.35 / Chapter 2.5. --- Reported levels of left handedness / Chapter 2.5.1. --- Introduction --- p.37 / Chapter 2.5.2. --- Worldwide assessment of handedness --- p.37 / Chapter 2.5.3. --- Use of left hand for writing --- p.39 / Chapter 2.5.4. --- Use of the left hand for writing amongst Chinese in Taiwan and Hong Kong --- p.39 / Chapter 2.5.5. --- Summary --- p.41 / Chapter 2.6. --- Reported differences amongst Chinese and other racesin behavioural and morphological asymmetries / Chapter 2.6.1. --- Introduction --- p.41 / Chapter 2.6.2. --- Racial differences of brain morphology in vitro --- p.42 / Chapter 2.6.3. --- Racial differences of brain morphology in vivo --- p.42 / Chapter 2.6.4. --- Racial differences relating to speech --- p.44 / Chapter 2.6.5. --- Chinese attitudes to use of the left and right hands --- p.44 / Chapter 2.6.6. --- Summary --- p.44 / Chapter 2.7. --- Choice of method / Chapter 2.7.1. --- Choice of CT for morphological brain measurements --- p.45 / Chapter 2.7.2. --- Choice of linear measurements to assess morphological asymmetries --- p.46 / Chapter 2.7.3. --- Selection of subjects for handedness --- p.47 / Chapter 2.7.4. --- Selection of method for handedness assessment --- p.47 / Chapter 2.8. --- Justification for this research --- p.48 / Chapter 2.9. --- Aim and objectives of the research / Chapter 2.9.1. --- Aim of the research --- p.49 / Chapter 2.9.2. --- Objectives of the research --- p.50 / Chapter Chapter Three --- Methods / Chapter 3.1. --- Measurements of the cerebral hemispheres / Chapter 3.1.1. --- Selection of subjects --- p.51 / Chapter 3.1.2. --- Computed tomographic equipment used --- p.51 / Chapter 3.1.3. --- Exposure factors and pixel size --- p.52 / Chapter 3.1.4. --- Position of the subject for routine brain scan --- p.53 / Chapter 3.1.5. --- Exclusion criteria --- p.54 / Chapter 3.1.6. --- Measurements of the frontal and occipital lobes --- p.54 / Chapter 3.1.7. --- Measurements of the mid-cerebral region --- p.56 / Chapter 3.1.8. --- Division of subjects by age --- p.57 / Chapter 3.1.9. --- Reproducibility of width measurements --- p.58 / Chapter 3.1.10. --- Decimal places --- p.59 / Chapter 3.1.11. --- Assumptions --- p.59 / Chapter 3.2. --- Assessment of handedness in three age groups / Chapter 3.2.1. --- Rational behind choice of three groups --- p.63 / Chapter 3.2.2. --- Students aged 19-22 years --- p.64 / Chapter 3.2.3. --- Children aged 6-7 years --- p.64 / Chapter 3.2.4. --- Children aged 4-5 years --- p.65 / Chapter 3.3. --- Analysis of data / Chapter 3.3.1. --- Distribution of width measurements --- p.65 / Chapter 3.3.2. --- The affect of age on the data --- p.66 / Chapter 3.3.3. --- Asymmetry of both frontal and occipital lobes --- p.66 / Chapter 3.3.4. --- Skew Index --- p.66 / Chapter 3.3.5. --- "Significance of ""Positive skew"" and ""Negative skew""" --- p.67 / Chapter 3.3.6. --- Analysis of data for Skew index --- p.69 / Chapter Chapter Four --- Results / Chapter 4.1. --- "Distribution of the width measurements from left and right sides of the occipital,frontal and mid-cerebral regions" / Chapter 4.1.1. --- Introduction --- p.70 / Chapter 4.1.2. --- The mid-cerebral regions --- p.70 / Chapter 4.1.2.1. --- Distribution of widths from the left mid-cerebral region --- p.71 / Chapter 4.1.2.2. --- Distribution of widths from the right mid-cerebral region --- p.72 / Chapter 4.1.2.3. --- Comparison of left and right widths --- p.73 / Chapter 4.1.3. --- The frontal lobes --- p.74 / Chapter 4.1.3.1. --- Distribution of widths from the left frontal lobe --- p.74 / Chapter 4.1.3.2. --- Distribution of widths from the right frontal lobe --- p.75 / Chapter 4.1.3.3. --- Comparison of left and right widths --- p.76 / Chapter 4.1.4. --- The occipital lobes --- p.77 / Chapter 4.1.4.1. --- Distribution of widths from the left occipital lobe --- p.77 / Chapter 4.1.4.2. --- Distribution of widths from the right occipital lobe --- p.78 / Chapter 4.1.4.3. --- Comparison of left and right widths --- p.79 / Chapter 4.1.5. --- Summary of the means and standard deviations of widths --- p.80 / Chapter 4.1.6. --- Correlation between left and right sides --- p.81 / Chapter 4.1.7. --- Correlation of size of regions with age --- p.81 / Chapter 4.1.8. --- Summary --- p.82 / Chapter 4.2. --- Measurements examined as a function of age / Chapter 4.2.1. --- The mid-cerebral regions --- p.83 / Chapter 4.2.1.1. --- The left mid-cerebral region of all age groups --- p.83 / Chapter 4.2.1.2. --- The right mid-cerebral region of all age groups --- p.85 / Chapter 4.2.2. --- The frontal lobes --- p.86 / Chapter 4.2.2.1. --- The left frontal lobe of all age groups --- p.86 / Chapter 4.2.2.2. --- The right frontal lobe of all age groups --- p.87 / Chapter 4.2.3. --- The occipital lobes --- p.88 / Chapter 4.2.3.1. --- The left occipital lobe of all age groups --- p.88 / Chapter 4.2.3.2. --- The right occipital lobe of all age groups --- p.89 / Chapter 4.2.4. --- Summary --- p.90 / Chapter 4.3. --- Asymmetry of the frontal and occipital lobes and Skew Index / Chapter 4.3.1 --- Asymmetry of the frontal and occipital lobes --- p.91 / Chapter 4.3.2 --- Introduction to 'Skew index' --- p.92 / Chapter 4.3.3. --- Positive Skew 226}0ب and 226}0بNegative Skew' --- p.93 / Chapter 4.3.4. --- Distribution of 'Skew index' --- p.95 / Chapter 4.3.5. --- Skew index' as a function of age --- p.96 / Chapter 4.3.5.1. --- Distribution of 226}0بSkew index' of subjects aged 0-9 years (group 1) --- p.96 / Chapter 4.3.5.2. --- Distribution of 'Skew index' of subjects aged 10-19 years (group 2) --- p.97 / Chapter 4.3.5.3. --- Distribution of 'Skew index' of all subjects divided by decade (groups 1-9) --- p.98 / Chapter 4.3.6. --- Summary --- p.99 / Chapter 4.4. --- Handedness --- p.100 / Chapter Chapter Five --- Discussion / Chapter 5.1. --- Morphological asymmetries of the brain / Chapter 5.1.1. --- Asymmetry of the frontal and occipital lobes --- p.101 / Chapter 5.1.2. --- Asymmetry of the temporal lobes --- p.103 / Chapter 5.1.3. --- Skew of the cerebral hemispheres --- p.103 / Chapter 5.2. --- "Findings from the younger age groups, aged under 20 years" / Chapter 5.2.1. --- Width measurements from subjects aged under 10 years --- p.104 / Chapter 5.2.2. --- Skew measurements of subjects aged under 10 years --- p.105 / Chapter 5.2.3. --- Width measurements of subjects aged from 10 to 19 years --- p.106 / Chapter 5.2.4. --- Skew measurements of subjects aged from 10 to 19 years --- p.106 / Chapter 5.3. --- Findings from the adults aged from 20 to 79 years / Chapter 5.3.1. --- Size of the cerebral regions --- p.107 / Chapter 5.3.2. --- Skew measurements of subjects aged from 20 to 79 years --- p.107 / Chapter 5.4. --- Findings from the oldest adults aged over 80 years / Chapter 5.4.1. --- An atypical group of subjects --- p.107 / Chapter 5.4.2. --- Size of the cerebral regions --- p.108 / Chapter 5.4.3. --- Cerebral skew in subjects aged over 80 years --- p.109 / Chapter 5.5. --- "Limitations, problems, bias, artefacts and main weakness" / Chapter 5.5.1. --- Limitations of the occipital and frontal measurements --- p.111 / Chapter 5.5.2. --- Linear measurements and possible limitations --- p.111 / Chapter 5.5.3. --- Problems encountered with cerebral measurements --- p.112 / Chapter 5.5.4. --- Potential bias in selection of subjects for assessing morphological asymmetry of the brain --- p.113 / Chapter 5.5.5. --- Potential source of error from CT artefacts --- p.113 / Chapter 5.5.6. --- Main weakness of this study --- p.113 / Chapter 5.6. --- Handedness / Chapter 5.6.1. --- Cerebral asymmetries --- p.114 / Chapter 5.6.2. --- Numbers of left-handers amongst the Chinese --- p.114 / Chapter 5.6.3. --- Left handedness amongst the Chinese in Taiwan --- p.114 / Chapter 5.6.4. --- Comparison of handedness amongst different races --- p.115 / Chapter 5.6.5. --- Biasing influences on Chinese children at school --- p.116 / Chapter 5.6.6. --- Biasing influences on Chinese children at home --- p.117 / Chapter 5.6.7. --- Handedness in two generations --- p.117 / Chapter 5.6.8. --- Potential bias in selection of subjects for assessing handedness --- p.118 / Chapter 5.6.9. --- Summary of results of handedness --- p.118 / Chapter 5.7. --- Extensions of the study / Chapter 5.7.1. --- Assessment of left-handedness amongst Chinese of Hong Kong --- p.119 / Chapter 5.7.2. --- Establishment of the association between handedness in the population and morphological brain asymmetry --- p.119 / Chapter Chapter Six --- Conclusion / Chapter 6.0 --- Conclusion --- p.121 / References --- p.123 / Acknowledgements --- p.133
2

An exploration of the cerebral lateralisation of musical function /

Wilson, Sarah Jane. January 1996 (has links)
Thesis (Ph. D.)--University of Melbourne, 1997. / Typescript (photocopy). Includes bibliographical references (leaves 533-565).
3

Variations in functional lateralization

Wendt, Peter E. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
4

Variations in functional lateralization

Wendt, Peter E. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted. Includes bibliographical references.
5

Determining cerebral lateralisation : the use of the P300

Harpur, Timothy John January 1985 (has links)
The P300 component of the average evoked potential was recorded at Pz during two divided visual field tasks. During a lexical decision task, reaction time and P300 latency were faster to stimuli in the right visual field, indicating that the latency of the P300 may be a useful measure in laterality research. A right visual field advantage was obtained for reaction time in a face perception task and the P300 latency difference showed a similar but non-significant advantage. Use of the P300 latency to assess the validity of the assumptions underlying the application of an additive factors model to divided visual field studies of cerebral assymetry was discussed. The present evidence suggests that the assumptions are valid. / Arts, Faculty of / Psychology, Department of / Graduate
6

Automatic and attentionally controlled processing in the cerebral hemispheres

Eglin, Susan Mirjam January 1982 (has links)
The thesis describes research investigating differences between the two hemispheres in automatic and in attentionally controlled processes. It is suggested that the interaction between these two processes may be a source of hemispheric differences. Three different paradigms that each imply different definitions of automatic and attentionally controlled processes are used: A paradigm used to demonstrate illusory conjunctions, a modified priming paradigm and a modified Stroop-task. Converging evidence from all three paradigms indicates that automatic processes are common to both hemispheres. Lateral asymmetries only emerge in attentional effects. For verbal information, selective attention mechanisms in the left hemisphere are found to be selective for left hemisphere items only, whereas right hemisphere mechanisms are sensitive to information from both hemispheres. The right hemisphere appears to be able to give some automatic support to attended verbal processing in the left hemisphere, while the reverse seems to be more difficult. / Arts, Faculty of / Psychology, Department of / Graduate
7

Thinking style preferences in communication pathology

Avenant, Carina. January 2001 (has links)
Thesis (M.Communication pathology)-Universiteit van Pretoria, 2001.
8

Linkshandigheid en dyslexie de testosteron-theorie voor cerebrale lateralisatie = Left-handedness and dyslexia = La gaucherie et la dyslexie /

Graaf-Tiemersma, Martha Jacoba de. Unknown Date (has links)
Thesis (doctoral)--Universiteit Utrecht, 1995. / Summaries in English and French.
9

Functional magnetic resonance imaging analysis of inverted and non-inverted left-handed subjects during language tasks

Bodiker, Goldie Marie. January 2004 (has links)
Thesis (M.S.)--Medical College of Ohio, 2004. / "In partial fulfillment of the requirements for the degree of Master of Science in Biomedical Sciences." Major advisor: Michael J. Dennis. Includes abstract. Document formatted into pages: iii, 62 p. Title from title page of PDF document. Includes bibliographical references (p. 57-61).
10

Cerebral lateralization : biological mechanisms, associations, and pathology

January 1987 (has links)
Norman Geschwind, Albert M. Galaburda. / "A Bradford book." "Much of this book appeared as a three-part article in the 'Archives of neurology' volume 42, May, June, and July, 1985"--T.p. verso. Includes index. / Bibliography: p. [241]-273.

Page generated in 0.0519 seconds