1 |
The queen's domination problemBurger, Alewyn Petrus 11 1900 (has links)
The queens graph Qn has the squares of then x n chessboard as its vertices; two squares
are adjacent if they are in the same row, column or diagonal. A set D of squares of
Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a
square in D. If no two squares of a set I are adjacent then I is an independent set.
Let 'J'(Qn) denote the minimum size of a dominating set of Qn and let i(Qn) denote
the minimum size of an independent dominating set of Qn. The main purpose of this
thesis is to determine new values for'!'( Qn). We begin by discussing the most important
known lower bounds for 'J'(Qn) in Chapter 2. In Chapter 3 we state the hitherto known
values of 'J'(Qn) and explain how they were determined. We briefly explain how to
obtain all non-isomorphic minimum dominating sets for Q8 (listed in Appendix A). It
is often useful to study these small dominating sets to look for patterns and possible
generalisations. In Chapter 4 we determine new values for')' ( Q69 ) , ')' ( Q77 ), ')' ( Q30 )
and i (Q45 ) by considering asymmetric and symmetric dominating sets for the case
n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3,
thus determining the values of 'I' ( Q19) and 'I' (Q31 ). In Chapter 6 we prove the upper
bound')' (Qn) :s; 1
8
5n + 0 (1), which is better than known bounds in the literature and
in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8
we determine the irredundance number for the hexagonal boards H5 and H7, as well as for Q5 and Q6 / Mathematical Sciences / D.Phil. (Applied Mathematics)
|
2 |
The queen's domination problemBurger, Alewyn Petrus 11 1900 (has links)
The queens graph Qn has the squares of then x n chessboard as its vertices; two squares
are adjacent if they are in the same row, column or diagonal. A set D of squares of
Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a
square in D. If no two squares of a set I are adjacent then I is an independent set.
Let 'J'(Qn) denote the minimum size of a dominating set of Qn and let i(Qn) denote
the minimum size of an independent dominating set of Qn. The main purpose of this
thesis is to determine new values for'!'( Qn). We begin by discussing the most important
known lower bounds for 'J'(Qn) in Chapter 2. In Chapter 3 we state the hitherto known
values of 'J'(Qn) and explain how they were determined. We briefly explain how to
obtain all non-isomorphic minimum dominating sets for Q8 (listed in Appendix A). It
is often useful to study these small dominating sets to look for patterns and possible
generalisations. In Chapter 4 we determine new values for')' ( Q69 ) , ')' ( Q77 ), ')' ( Q30 )
and i (Q45 ) by considering asymmetric and symmetric dominating sets for the case
n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3,
thus determining the values of 'I' ( Q19) and 'I' (Q31 ). In Chapter 6 we prove the upper
bound')' (Qn) :s; 1
8
5n + 0 (1), which is better than known bounds in the literature and
in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8
we determine the irredundance number for the hexagonal boards H5 and H7, as well as for Q5 and Q6 / Mathematical Sciences / D.Phil. (Applied Mathematics)
|
3 |
Computational methods for domination problemsBird, William Herbert 04 October 2017 (has links)
For a graph G, the minimum dominating set problem is to find a minimum size set S of vertices of G such that every vertex is either in S or adjacent to a vertex in the set. The decision version of this problem, which asks whether G has a dominating set of a particular size k, is known to be NP-complete, and no polynomial time algorithm to solve the problem is currently known to exist. The queen domination problem is to find the minimum number of queens which, collectively, can attack every square on an n by n chess board. The related border queen problem is to find such a collection of queens with the added restriction that all queens lie on the outer border of the board. This thesis studies practical exponential time algorithms for solving domination problems, and presents an experimental comparison of several different algorithms, with the goal of producing a broadly effective general domination solver for use by future researchers.
The developed algorithms are then used to solve several open problems, including cases of the queen domination problem and the border queen problem. In addition, new theoretical upper bounds are presented for the border queen problem for some families of queen graphs. / Graduate
|
4 |
"Operator ideals on ordered Banach spaces"Spinu, Eugeniu Unknown Date
No description available.
|
Page generated in 0.2993 seconds