321 |
Modulation de l’expression et de la fonction des protéines dopaminergiques présynaptiques par les statines : Application potentielle pour une intervention thérapeutique dans la maladie de Parkinson. / Modulation of the expression and function of dopaminergic presynaptic proteins by the statins : Potential implication for the therapeutic intervention in Parkinson’s disease.Schmitt, Mathieu 08 December 2015 (has links)
La maladie de Parkinson (MP) est caractérisée par une perte progressive des terminaisons présynaptiques dopaminergiques et reste actuellement incurable. Néanmoins, dans les études épidémiologiques, il a été montré que l’utilisation des statines, médicaments hypocholestérolémiants, diminue le risque de développer une MP. Les statines sont également capables d'inhiber les effets neurodégénératifs dans les modèles précliniques in-vitro et in-vivo de la MP. Cependant, les mécanismes moléculaires à l’origine de ces effets neuroprotecteurs ne sont pas encore complétement élucidés. Ainsi, nous avons étudié les effets potentiels des statines sur l'expression des marqueurs synaptiques et sur le transport de la dopamine. Dans nos études, les statines induisent la croissance des neurites dans les cellules dopaminergiques et déclenchent une augmentation de l’expression des protéines synaptiques dopaminergiques telles que le transporteur vésiculaire des monoamines (VMAT2) et le transporteur de la dopamine. Les statines induisent une diminution de la recapture de la dopamine cellulaire et des changements d’affinités aux niveaux des sites de liaison des inhibiteurs sélectifs du VMAT2. L’activation du facteur de transcription nucléaire protéine-1 se liant à l'élément de régulation des stérols (SREBP-1), cholestérol-dépendent, serait l’élément inducteur de la surexpression des marqueurs dopaminergiques présynaptiques induite par les statines. En outre, ces résultats soutiennent un potentiel thérapeutique neuroprotecteur et/ou neurorestaurateur des statines précédemment proposées dans la MP et permettent de mettre en évidence de nouvelles cibles thérapeutiques comme le facteur SREBP. / Parkinson disease (PD) is characterized by a progressive loss of dopaminergic presynaptic terminals and remains incurable. However in epidemiological studies, it has been shown that the use of statins, which are hypocholesterolemic drugs, diminishes the risk to develop a PD. Statins are able to inhibit the neurodegenerative effects in in-vitro and in-vivo models of PD. However, the molecular mechanisms driving neuroprotective effects are not yet fully understood. Consequently, we investigated the potential effects of statins on the synaptic expression and dopamine transport function in the dopaminergic system. In our studies, statins enhance the neurite outgrowth in the dopaminergic cells and trigger an increase in the expression levels of presynaptic dopaminergic proteins such as vesicular monoamine transporter 2 (VMAT2) and dopamine transporter. Statins induce a reduction of dopamine cellular uptake and modulate the binding-affinity of the specific inhibitors for VMAT2. The activation of the nuclear transcriptional factor sterol regulatory element-binding protein 1 (SREBP-1), cholesterol-dependent, could be the key element of the overexpression of dopaminergic presynaptic markers induced by the statins. Furthermore, these findings highlight the therapeutic neuroprotective and/or neurorestorative potentials of statins previously proposed in PD and allow to bring out new potential therapeutic targets such as SREBP factor.
|
322 |
Modélisation computationnelle du rôle de la dopamine dans les boucles cortico-striatales dans l'apprentissage et la régulation de la sélection de l'action / Computational modeling of the role of dopamine in the cortico-striatal loops in learning and action selection's regulationBellot, Jean 07 July 2015 (has links)
Dans ce travail de thèse, nous avons modélisé le rôle de la dopamine dans l'apprentissage et dans les processus de sélection de l'action en lien avec les ganglions de la base. L'activité des neurones dopaminergiques présente de nombreuses similarités avec l'erreur de prédiction de la récompense utilisée par les algorithmes d'apprentissage par renforcement. Ainsi, ces neurones sont supposés guider le processus de sélection de l'action.Dans une première partie, nous avons analysé l'information encodée par les neurones dopaminergiques dans une tâche à choix multiples en la comparant à différentes informations utilisées par les modèles d'apprentissage par renforcement. Nos résultats suggèrent que l'information encodée par les neurones dopaminergiques enregistrer dans la tâche n'est que partiellement compatible avec une erreur de prédiction et semble en partie dissociée du comportement.Dans une deuxième partie, nous avons simulé l'effet de la dopamine sur un modèle des ganglions de la base prenant en compte des connections existant chez le primate, souvent négligées dans la littérature. La plupart des modèles actuels font en effet l'hypothèse d'une séparation stricte de deux chemins dans les ganglions de la base : le chemin direct lié à la récompense et le chemin indirect lié à la punition. Cependant des études anatomiques remettent en question cette dissociation, en particulier chez le primate. Nous proposons ainsi d'étudier comment différents niveaux de dopamine, dans le contexte de la maladie de Parkinson, affectent l'apprentissage et la sélection de l'action dans ce modèle / In this thesis work, we modelled the role of dopamine in learning and in the processes of action selection through its interaction with the basal ganglia. During the 90’s, the work of Schultz and colleagues has led to major progress in understanding the neural mechanisms underlying the influence of feedback on learning. The activity of dopaminergic neurons exhibited properties of the reward prediction error signal used in so-called Temporal Difference (TD) machine learning algorithms. Thus, DA has been thought to be the neural signal that help us to adapt our behavior. In the first part of my PhD, we analyze the information encoded by dopaminergic neurons recorded during a multi-choice task. In this purpose, we modeled the task and simulated different TD learning algorithms to quantitatively compare their ability to reproduce dopamine neurons activity. Our results show that the information carried out by dopamine neurons is only partly consistent with a reward prediction error and seems to be dissociated from behavioral adaptation.In the second part of my PhD, we study the effect of different levels of dopamine in a biologically plausible model of primates basal ganglia that considers existing connections often neglected in the literature. Indeed, most of current models of basal ganglia assume the existence of two segregated pathway: the direct pathway associated with reward and the indirect pathway associated with punishment. However, anatomical studies in primates revealed that these two pathways are not dissociated. We study the ability of such a model to reproduce beta oscillations observed in Parkinsonian and the differences in reward and punishment sensitivity, with high or low-level of dopamine.
|
323 |
Long-lasting effects of operant conditioning and cocaine on D1 pyramidal neurons in prefrontal cortex and on the D1 and D2 striatal neurons mRNAs / Effets à long terme du conditionnement opérant et de la cocaïne sur les ARNm dans les neurones d1 du cortex préfrontal et les neurones d1 et d2 du striatumMontalban, Enrica 22 September 2016 (has links)
La dopamine (DA) contrôle l'apprentissage lié à la récompense en régulant l'activité et la plasticité de la transmission corticostrialale. Les effets à long terme de la DA impliquent des changements dans la transcription des gènes. Le but de ce travail de thèse est d'étudier les changements transcriptionnels produit dans le striatum ventral, dorsal et cortex préfrontal, par un protocole d'apprentissage opérant ou après une activation du système de la récompense par des injections de cocaïne. Les neurones épineux moyens du striatum peuvent être séparé en deux populations fonctionnelles sur la base de l'expression du récepteur de type 1 de la DA (D1R) ou de type 2 (D2R). Des souris transgéniques expriment une protéine ribosomale étiqueté avec la GFP sous le contrôle du promoteur de D1R ou D2R ont été utilisés afin d'isoler les ARN messagers (ARNm) des neurones D1 ou D2. La première partie de ce travail est centré sur la comparaison de l'expression des gènes dans les différentes populations neuronales exprimant le D1R ou D2R appartenant aux différentes régions d'intérêt, ce qui apporte une caractérisation précise nouvelle des neurones cibles de la DA. Dans un deuxième temps, nous avons caractérisé les modifications produites dans chaque population neuronale par une stimulation passive du système de récompense (traitement chronique à la cocaïne) ou un recrutement actif (apprentissage opérant pour la nourriture). / Dopamine (DA) controls movement execution, action selection, and incentive learning by regulating the activity and plasticity of corticostriatal transmission. Long-term modifications require changes in gene transcription. The aim of this work is to study the changes in transcriptions following an operant learning protocol or mimicking stimulation of the reward system with cocaine in the dorsal striatum and the nucleus accumbens in the striatum, and in the prefrontal cortex. The medium-size spiny striatal projection neurons (SPNs) can be divided into 2 different populations based on the expression of the D1 or D2 DA receptor that participate in distinct pathways, which have opposite functional effects on their target regions. We used transgenic mice that express a tagged ribosomal protein (L10a-EGFP) under control of the D1 or D2 receptor promoter to isolate currently translated mRNA and nuclei from each population of SPNs, as well as from D1 neurons of the prefrontal cortex following passive stimulation of the reward system (chronic treatment with cocaine) and active recruitment of the reward system (operant learning for food). Firstly we compared the basal gene expression in the different neuronal populations characterized by the expression of D1 or D2 receptors and their regional localization. We identified hundreds of differentially expressed mRNA providing a precise characterization of the cellular and regional differences. In the second part, we characterized the changes induced in each neuronal population by a 1-week exposure to cocaine or after operant training for food.
|
324 |
Oxidation and reactivity of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolismAnderson, David Gustav Rathe 01 May 2011 (has links)
Parkinson's disease (PD) is a progressive neurodegenerative and movement disorder that involves specific loss of dopaminergic neurons in the substantia nigra of the brain. Exact causes of PD are unknown. However, cells affected in PD are centers of dopamine (DA) synthesis, storage, and metabolism, which implicate DA as an endogenous neurotoxin that contributes to PD. Furthermore, DA is known to undergo oxidation to radicals and quinones. These reactive species exert deleterious effects on cells through a variety of mechanisms that are relevant to the pathogenesis of PD. Another potential mechanism of toxicity for DA is metabolism to 3,4-dihydroxyphenylacetaldehyde (DOPAL). This reactive metabolite is significantly more toxic than the parent DA. DOPAL has several demonstrated mechanisms of toxicity, including formation of protein-adducts via reaction with amine-type cellular nucleophiles. However, known toxicity mechanisms do not fully account for DOPAL's high toxicity. Oxidation of DOPAL to a reactive quinone or radical could help explain its high toxicity. Therefore, the hypothesis of this work is that DOPAL is capable of undergoing oxidation that leads to increased protein modification and nucleophilic reactivity. Experimentally, oxidation of DOPAL results in formation of a semi-quinone radical and an ortho-quinone, as confirmed by electron paramagnetic resonance spectroscopy and nuclear magnetic resonance spectroscopy, respectively. In agreement with the stated hypothesis, oxidation of DOPAL enhanced its ability to induce protein cross-linking of a model protein (glyceraldehyde 3-phosphate dehydrogenase) as indicated by polyacrylamide gel-electrophoresis. Also, the presence of anti-oxidants (ascorbate, N-acetyl cysteine) attenuated the reactivity of DOPAL with the model aminenucleophile N-acetyl lysine. These results indicate that DOPAL oxidation enhances both protein cross-linking and nucleophilic reactivity.
This work resulted in several other important findings. DOPAL is shown to undergo carbonyl-hydration in aqueous media, and spontaneous oxidation of DOPAL results in formation of superoxide. Furthermore, DOPAL is shown to be susceptible to oxidation by cyclooxygenase-2, an enzyme known to be involved in PD. This provides a potential mechanism for formation of the oxidized products identified here. As DA metabolism and oxidation occur in cells affected by PD, the experimental results demonstrated here are likely relevant for understanding the pathogenesis of PD.
|
325 |
MC3R and MC4R Knockdown via RNA InterferenceMankin, Danielle N 12 July 2012 (has links)
Melanocortins (MCs) play an important role in feeding, metabolism, and energy expenditure. While melanocortin receptor (MCR) mRNA has been found in the mesolimbic dopamine (DA) pathway, the ability of melanocortins to regulate feeding and other behaviors through actions on the mesolimbic DA system have not been examined. Short-hairpin RNAs (shRNAs) were created targeting MC3R and MC4R and were tested via in vitro studies for their ability to knockdown their target receptor. A total of three shRNAs were created targeting each receptor, and each shRNA caused successful knockdown. These shRNAs are tools that can be used for future in vivo studies to examine the various behavioral effects of melanocortins on the mesolimbic DA pathway.
|
326 |
Héroïnomanies et schizophrénies aux frontières d' une comorbidité /Pouclet, Claude. Jacob, Claude. January 2002 (has links) (PDF)
Reproduction de : Thèse d' exercice : Médecine spécialisée : Nancy 1 : 2002. / Thèse : 2002NAN11097. Titre provenant de l'écran-titre.
|
327 |
Dopamine concentrations in nucleus accumbens subregions are differentially affected by ethanol administrationHoward, Elaina Charlotte 16 October 2009 (has links)
Dopamine increases in the nucleus accumbens after contingent and noncontingent
ethanol administration in rats, but the contributions of the core, coreshell
border, and shell subregions to this response are unclear. Also, it is not fully
understood if increases in dopamine under these circumstances are due to the
pharmacological effects of ethanol, stimuli associated with administration, or both.
The studies presented in this dissertation were conducted to investigate
dopamine’s role in each of these accumbal regions during ethanol administration
and presentation of associated stimuli. Using microdialysis, ethanol and
dopamine concentrations in accumbal subregions were measured every five
minutes before, during, and after either experimenter-delivered intravenous
ethanol or operant ethanol self-administration. After intravenous ethanol infusions,
the increase in dopamine in the shell of the accumbens was significantly higher than that observed in the core. During operant ethanol self-administration, the
core, core-shell border, and shell, all exhibited significant increases in dopamine
during transfer of the animal into the operant chamber, with animals trained to
drink sucrose + ethanol showing significantly higher increases when compared to
those trained to drink sucrose alone. Dopamine increased significantly only in the
core-shell border during ethanol consumption, and dopamine levels in the core
and shell responded in a similar manner during all phases of the experiment.
Together, these results suggest that dopamine responses to intravenous ethanol
infusions and operant ethanol self-administration are subregion specific. Also,
while increases in dopamine resulting from intravenous ethanol infusions in naïve
animals appear to be due to the pharmacological effects of the drug, increases in
ethanol-experienced animals during transfer into the operant chamber, and
during ethanol consumption, may also be due to stimuli associated with ethanol administration. / text
|
328 |
Dopamine concentrations in the nucleus accumbens core-shell border during the early stages of operant ethanol self-administrationCarrillo, Jennifer 02 February 2011 (has links)
Mesolimbic dopamine plays an important role in ethanol reinforcement, and studies have shown that accumbal dopamine increases during operant ethanol self-administration. However, no one has ever studied this dopaminergic response during the acquisition of ethanol self-administration. Furthermore, some studies have shown that the dopamine signal does not correlate with the pharmacological effects of ethanol, but with the time during which the animal consumes the majority of the ethanol solution and when the sensory stimuli of ethanol are strongest. However, there is currently no direct evidence showing that the sensory stimuli of ethanol is indeed what causes the brief increase in accumbal dopamine during ethanol self-administration. The studies in this dissertation attempted to elucidate these issues.
We designed and tested a placebo spout, which was to be used to study the relationship between accumbal dopamine and the sensory stimuli of ethanol during self-administration. Unfortunately, the placebo designs were either not feasible for performing microdialysis or did not show promising behavioral data. We also developed and tested a self-administration protocol in which the concentrations of ethanol (10%) were kept constant throughout the study. The new protocol was successful in initiating and maintaining ethanol self-administration, and the animals doubled their intake from day 1 to day 2 of ethanol consumption. Using this protocol, we trained male Long Evans rats to self-administer ethanol and measured accumbal dopamine during the first two days of ethanol self-administration through microdialysis. The behavioral and neurochemical data matched. A single exposure to ethanol was sufficient for the animals to double their ethanol consumption by day 2 and to cause an increase in accumbal dopamine during the first 5 minutes of ethanol self-administration. The dopamine response was observed during the time when the sensory stimuli of ethanol were strongest, but before ethanol reached peak concentrations in the brain. Overall, these results suggest that the dopamine response to ethanol self-administration may not be solely pharmacological and that a single exposure to ethanol is sufficient to learn the association between ethanol and its cues. These findings give us greater insight into mesolimbic dopamine's role in the early stages of ethanol reinforcement. / text
|
329 |
Examination of the Role of Dopamine D3 Receptors in Behavioural Sensitization to EthanolHarrison, Sarah Jane 31 July 2008 (has links)
Dopamine D3 receptors (D3Rs) have been implicated in mediating behavioural sensitization to various drugs of abuse, but their role in ethanol (EtOH) sensitization has not been directly examined. Neil Richtand proposed a role for D3Rs in the modulation of sensitization by acting as an inhibitor of D1/D2 receptor-mediated behaviours, and several reports suggest D3Rs up-regulate in response to chronic drugs of abuse. In separate experiments, we examined EtOH sensitization in D3R knockout (KO) as well as in D1R and D2R KO mice. We also examined amphetamine sensitization in D3R KOs compared to wild type mice. We challenged C57Bl/6 and DBA/2 mice with a D3R agonist (PD128907) and antagonist (U99194A) to examine how acute and chronic D3R activation and inactivation may affect the induction and expression of EtOH sensitization. We investigated D1/D3R interactions in sensitized and control mice and examined whether EtOH sensitization leads to changes in D3R binding using [125I]-7-OH-PIPAT autoradiography.
Results showed that D3R KOs, were resistant to EtOH but not to amphetamine sensitization. Chronic but not acute D3R blockade with U99194A inhibited the induction, whereas acute D3R activation with PD128907 attenuated the expression of EtOH sensitization. In our D1/D3R interaction study we observed that although PD128907 attenuated D1 agonist-induced hyperactivity with SKF81297, this effect was the same in sensitized and control animals, even though sensitized mice were more responsive to PD128907 than controls. This enhanced response, which suggests a functional up-regulation of D3Rs, was not accompanied by changes in D3R binding as indicated by autoradiography, and could mean that functional changes in the D3R associated with EtOH sensitization occur elsewhere than at the level of the membrane-bound receptor.
Taken together, these results suggest a modulatory role for the D3R in EtOH but not amphetamine sensitization, where D3R activation attenuates the expression and D3R blockade prevents the induction of EtOH sensitization. These results are important because a better understanding of the role of the D3R in EtOH sensitization may help not only to identify some of the underlying neural mechanisms of sensitization, but also help in the identification of treatment strategies for patients that may be susceptible to alcohol abuse.
|
330 |
Factors that influence the dopamine neuron as revealed by dopamine transporter expressionBurke, Mark, 1975- January 2005 (has links)
The primary focus of the present thesis is the exploration of factors that influence the dopamine (DA) neuron by examining the expression of the dopamine transporter (DAT), a marker of the DA neuron. The secondary focus of this thesis is on the serotonin neuron and in particular the serotonin transporter (SERT), a marker of the serotonin neuron. To this end three distinct and separate models have been employed. The goals of this thesis were: (1) to test the hypothesis that monoamine oxidase inhibition during development alters serotonergic innervation in the cortex and raphe, while not affecting relative DA innervation of nigrostriatal pathway, (2) to test the hypothesis that elevated brain levels of hypoxanthine (Hx) deleteriously affect the DA neuron, and (3) to test the hypothesis that densities of DAT and SERT in brainstem cell body regions distinguish alcohol-preferring vervet monkeys with different behavioral patterns of ethanol consumption. / Alterations in the activity of monoamine oxidase (MAO), a degradative enzyme that plays an important role in regulating levels of monoamine transmitters, may have a profound effect on brain development. The present study investigates relative DA and serotonin innervation of cortical and subcortical areas, measured by DAT and SERT densities, following MAO inhibition (A or B or A+B) in mice throughout gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway. The most significant finding reported here is that the combined MAO-A+B inhibition significantly reduced SERT binding by 25% in both the cortex and raphe nucleus. Lower levels of SERT binding were apparent during the early post-natal period (PND 14), a period during which pups were still exposed to MAO inhibitors in the dam's milk, but also persisted into later life (PND's 35 and 90) after inhibitors were no longer being administered. Persistent effects were restricted to cortex and raphe, suggesting a relative vulnerability of these regions to alterations in monoamine transmitter levels during development. / The second study presents data demonstrating that Hx delivered intracerebroventricularly significantly reduces the number of tyrosine hydroxylase immunoreactive cells (TH-ir) in the substantia nigra by 22% and 30%, at 7 and 21 days, respectively. After 3 days of Hx administration, striatal DA and serotonin were elevated over control levels by 22% and 25%, respectively, but returned to control levels by 7 days. The serotonin metabolite 5-HIAA was elevated after 3 days of Hx, but levels of DA metabolites were not different from control. Locomotion, a behavior thought to be related to DA transmission, was elevated following Hx treatment, as were presynaptic markers of the DA system such as DAT and TH protein levels. The persistent reduction in TH positive cell numbers suggests that Hx damages or kills DA neurons. The increase in intracellular DA at early time points suggests that Hx might interfere with DA release, possibly by temporarily inactivating DA neurons. These findings are consistent with the hypothesis that Hx, a purine significantly elevated in blood and CSF of Lesch-Nyhan patients, maybe involved in DA dysfunction. / Studies on alcohol abuse have focused on the mesolimbic DA pathway and the serotonergic influence within this pathway. Here we report that abstinent binge-drinking monkeys have significant reductions of SERT binding, and to a lesser extent, DAT binding in the midbrain region, while abstinent heavy-drinking subjects have elevated levels of DAT binding, as compared to controls. Both mesolimbic and nigrostriatal pathways are affected. CSF levels of both HVA and 5-HIAA substantiate the neuroanatomical differences between binge- and heavy-drinking vervets. Taken together, these findings provide a neurochemical profile with which to further distinguish subtypes of alcohol-preferring vervet monkeys.
|
Page generated in 0.0689 seconds