• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alterations in Noradrenergic Innervation of the Brain Following Dorsal Bundle Lesions in Neonatal Rats

Klisans-Fuenmayor, Dolores, Harston, Craig T., Kostrzewa, Richard M. 01 January 1986 (has links)
Several seemingly conflicting sets of data have been reported on the regenerative capacity of central noradrenergic neurons, following transection of the ascending noradrenergic fiber tract in neonatal rats (Iacovitti et al., Dev Brain Res 1: 21-33, 1981; Jonsson and Sachs, Brain Res Bull 9: 641-650, 1982). In order to more fully investigate changes in noradrenergic neurons in the brain after such a transection, rats were lesioned at various times after birth, sometimes in conjunction with administration of the neurotoxin, 6-hydroxydopa (6-OHDOPA). Animals were sacrifced at 7, 10, 14, 28, 42 or 56 days after birth, in order to assess the pattern of noradrenergic neuronal damage, as well as the recovery rate. Dorsal bundle lesions were associated with neocortical and hippocampal hypoinnervation by noradrenergic fibers, and sprouting of a collateral fiber group, with production of noradrenergic hyperinnervation of the cerebellum and pons-medulla. Recovery of the norepinephrine (NE) content to control levels occurred in the neocortex at 8 weeks, when the dorsal bundle was lesioned at birth. When the lesion was produced at a later time (3 days or 5 days after birth), less recovery in the neocortex and hippocampus was found. Histofluorescent fiber number, as observed with a glyoxylic acid method, correlated with NE changes. It appears that 6-OHDOPA (20 μg/g IP) does not modify long-term recovery from a dorsal bundle lesion, when rats are co-treated at 3 days after birth. However, the length of the proximal noradrenergic fiber stump may be an important factor affecting the capacity for recovery from injury. These results suggest that a shorter fiber stump, as produced with a dorsal bundle lesion at the level of the pons, may be associated with a greater degree of recovery from injury. Also, the younger the rat at the time of injury, the greater appears to be the capacity for regeneration. These results demonstrate that regeneration can occur in one part of the brain without modification of a collateral hyperinnervation of a different part of the brain. Therefore, our findings discount a programming of central noradrenergic fibers to express a specific number of nerve terminal arborizations, (i.e., the "pruning hypothesis").
2

Destruction of Cells in the Midportion of the Locus Coeruleus by a Dorsal Bundle Lesion in Neonatal Rats

Kostrzewa, Richard M., Hardin, Judy C., Jacobowitz, David M. 01 March 1988 (has links)
Although insult of the developing noradrenergic neuronal system in the brain has been associated with redistribution of noradrenergic fiber input to various target brain regions, few studies have investigated the effects of such insults on locus coeruleus cell survival. In the present study the dorsal noradrenergic bundle was transected by means of a midbrain knife cut in rats 3 days after birth, and the effects of this lesion were determined approximately 8-10 weeks later. Bymeans of an immunofluorescent histochemical procedure. it was shown that tyrosine hydroxylase-containing fibers and dopamine β-hydroxylase-containing fibers were markedly reduced in number in the neocortex and hippocampus - regions anterograde to the site of axonal transection. It was further demonstrated that the number of fluorescent fibers coursing through the dorsal bundle was similarly reduced. Sprouting of noradrenergic fibers in the brainstem and cerebellum accompanied the above alterations. When locus coeruleus cell number was determined by counting Cresyl violet-stained nucleoli in serial sections it was found that dorsal bundle transection produced a loss of 17% of the cells of the coeruleus. By dividing the counts for each nucleus into fifths, it was additionally found that approximately 20-25% of those cells comprising the midportion of the nucleus, along a rostrocaudal axis, were the ones destroyed by axonal transection. These findings indicate that a neonatal lesion of the dorsal bundle produces a loss of cells in the midportion of the nucleus locus coeruleus, and that this effect is associated with noradrenergic neuronal hyperinnervation of the brainstem and cerebellum.
3

Noradrenergic Fiber Sprouting in the Cerebellum

Kostrzewa, Richard M., Harston, Craig T., Fukushima, Hideki, Brus, Ryszard 01 January 1982 (has links)
In order to attain a better understanding of the sprouting response of noradrenergic fibers in the central nervous system (CNS), noradrenergic innervation to the cerebellum was observed by the glyoxylic acid method after a variety of manipulations and in a genetic variant of mouse classified as "Purkinje cell degeneration" (pcd/pcd). It has been found that a midbrain lesion in rats at birth will result in a collateral sprouting response of noradrenergic fibers in the cerebellum at 8 weeks, as indicated by the increased number of histofluorescent fibers observed in the molecular layer of the cerebellar cortex. Another procedure, treatment of neonatal rats with nerve growth factor alone appears to produce a temporary stimulation of noradrenergic fiber growth in the cerebellum, as observed by the histofluorescent method, although the innervation at 6 weeks or later is ultimately unchanged from the control group. In contrast, NGF (500 units) given to rats in combination with 6-hydroxydopa (6-OHDOPA) (60 μg/g IP) at 3 days postbirth produces a hyperinnervation of the cerebellum by noradrenergic fibers by 2 weeks of age and until at least 8 weeks of age. A third procedure, locus coeruleus implantation, was generally unsuccessful using the procedures described, since the implant was usually non-viable after several days. In a few instances where histofluorescent nuclei were found within the implant, there was an abundance of histofluorescent fibers within and adjacent to the implant, with fibers appearing to grow into host cerebellum. In the final procedure, it was noted that the density of noradrenergic input to the molecular layer of the cerebellar cortex was markedly increased in a genetic mutant mouse, classified as "Purkinje cell degeneration" (pcd/pcd), which is characterized by the absence of Purkinje cells of the cerebellum in adulthood. However, because of the tissue shrinkage that occurs after loss of Purkinje cells during postnatal development, it is unclear as to whether this observation represents hyperinnervation or a normal complement of fibers in a smaller brain space. The above procedures demonstrate the plasticity of noradrenergic fibers in neonatal cerebellum, a brain region that undergoes considerable postnatal development. The cerebellum is thought to be a good site for studying development/ regeneration/sprouting of noradrenergic fibers in particular, and central axonal processes in general.

Page generated in 0.2092 seconds