Spelling suggestions: "subject:"doserate monitor"" "subject:"dose'rate monitor""
1 |
"Câmara de ionização aplicada a medidas de altas taxas de dose." / Ionization chamber for high dose measurementsRodrigues Junior, Ary de Araujo 21 November 2005 (has links)
Irradiadores comerciais de grande porte são projetados para processarem grandes quantidades de produtos com altas doses, por exposição à radiação gama. A irradiação em escala industrial é efetuada de forma dinâmica, em que os produtos percorrem um caminho em torno de uma fonte de radiação, geralmente de 60Co, cuja atividade é da ordem de TBq a PBq (kCi a MCi). A dose será diretamente proporcional ao tempo transcorrido pelo material para percorrer este trajeto em torno da fonte. Entretanto, em algumas situações, principalmente para pesquisas ou processos de validação de clientes seguindo a norma ISO 11137, se faz necessário irradiar pequenas amostras com doses fracionadas na posição de irradiação estática. Nesta posição as amostras são colocadas dentro da sala de irradiação a uma distância fixa da fonte e as doses recebidas são determinadas utilizando-se dosímetros. Portanto, a dose somente será conhecida depois da irradiação, pela leitura dos mesmos. Entretanto, em irradiadores industriais, diferentes tipos de produtos com diferentes densidades atravessam o caminho entre a fonte e a posição de irradiação estática, onde estão as amostras. Conseqüentemente, a taxa de dose variará dependendo da densidade do produto, que está sendo irradiado dinamicamente. Uma metodologia adequada seria monitorar a dose recebida pelas amostras em tempo real, medindo a dose por meio de um detector de radiação, com uma melhor precisão e exatidão. Neste trabalho foi desenvolvida uma câmara de ionização cilíndrica de 0.9 cm3, para monitorar as altas doses recebidas por amostras em tempo real, na posição de irradiação estática de um irradiador gama de 60Co. Os gases de nitrogênio e de argônio a pressão de 10exp5 Pa (1 bar) foram utilizados para preencherem a câmara de ionização e determinar uma configuração de trabalho apropriada, para o detector ser utilizado em medidas de altas doses. Cabos de isolação mineral foram soldados diretamente ao corpo da câmara de ionização, para a transmissão do sinal gerado pelo detector até a eletrônica associada, distante cerca de 20 m. O sinal obtido foi cerca de 100 vezes maior do que o ruído de fundo. Este sistema dosimétrico foi testado em um irradiador gama de categoria I e na posição de irradiação estática de um irradiador de grande porte, em que diferentes taxas de dose foram obtidas utilizando materiais absorvedores. Foi encontrada uma boa linearidade do detector entre a dose e a carga, independentemente das diferentes taxas de dose. As incertezas de todas as curvas ficaram abaixo dos +/- 5 %, valor de incerteza máxima recomendada para um sistema dosimétrico de rotina. A câmara de ionização desenvolvida se mostrou adequada para ser utilizada como um dosímetro em tempo real, independente da degradação do espectro causada pela absorção dos fótons da fonte de 60Co, pelo material em irradiação dinâmica. / Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60Co gamma source with activity of TBq to PBq (kCi to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60Co gamma industrial plant. Nitrogen and argon gas at pressure of 10exp5 Pa (1bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma irradiator and at an industrial irradiation plant in static position, using different absorbing materials. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials. The uncertainties for all curves were less than 5%, which is recommended for a dosimetric system routine. The developed ionization chamber showed to be suitable as a dosimeter on line, independently of the spectrum degradation caused by the absorption of the 60Co photons in the material under dynamic irradiation.
|
2 |
"Câmara de ionização aplicada a medidas de altas taxas de dose." / Ionization chamber for high dose measurementsAry de Araujo Rodrigues Junior 21 November 2005 (has links)
Irradiadores comerciais de grande porte são projetados para processarem grandes quantidades de produtos com altas doses, por exposição à radiação gama. A irradiação em escala industrial é efetuada de forma dinâmica, em que os produtos percorrem um caminho em torno de uma fonte de radiação, geralmente de 60Co, cuja atividade é da ordem de TBq a PBq (kCi a MCi). A dose será diretamente proporcional ao tempo transcorrido pelo material para percorrer este trajeto em torno da fonte. Entretanto, em algumas situações, principalmente para pesquisas ou processos de validação de clientes seguindo a norma ISO 11137, se faz necessário irradiar pequenas amostras com doses fracionadas na posição de irradiação estática. Nesta posição as amostras são colocadas dentro da sala de irradiação a uma distância fixa da fonte e as doses recebidas são determinadas utilizando-se dosímetros. Portanto, a dose somente será conhecida depois da irradiação, pela leitura dos mesmos. Entretanto, em irradiadores industriais, diferentes tipos de produtos com diferentes densidades atravessam o caminho entre a fonte e a posição de irradiação estática, onde estão as amostras. Conseqüentemente, a taxa de dose variará dependendo da densidade do produto, que está sendo irradiado dinamicamente. Uma metodologia adequada seria monitorar a dose recebida pelas amostras em tempo real, medindo a dose por meio de um detector de radiação, com uma melhor precisão e exatidão. Neste trabalho foi desenvolvida uma câmara de ionização cilíndrica de 0.9 cm3, para monitorar as altas doses recebidas por amostras em tempo real, na posição de irradiação estática de um irradiador gama de 60Co. Os gases de nitrogênio e de argônio a pressão de 10exp5 Pa (1 bar) foram utilizados para preencherem a câmara de ionização e determinar uma configuração de trabalho apropriada, para o detector ser utilizado em medidas de altas doses. Cabos de isolação mineral foram soldados diretamente ao corpo da câmara de ionização, para a transmissão do sinal gerado pelo detector até a eletrônica associada, distante cerca de 20 m. O sinal obtido foi cerca de 100 vezes maior do que o ruído de fundo. Este sistema dosimétrico foi testado em um irradiador gama de categoria I e na posição de irradiação estática de um irradiador de grande porte, em que diferentes taxas de dose foram obtidas utilizando materiais absorvedores. Foi encontrada uma boa linearidade do detector entre a dose e a carga, independentemente das diferentes taxas de dose. As incertezas de todas as curvas ficaram abaixo dos +/- 5 %, valor de incerteza máxima recomendada para um sistema dosimétrico de rotina. A câmara de ionização desenvolvida se mostrou adequada para ser utilizada como um dosímetro em tempo real, independente da degradação do espectro causada pela absorção dos fótons da fonte de 60Co, pelo material em irradiação dinâmica. / Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60Co gamma source with activity of TBq to PBq (kCi to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60Co gamma industrial plant. Nitrogen and argon gas at pressure of 10exp5 Pa (1bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma irradiator and at an industrial irradiation plant in static position, using different absorbing materials. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials. The uncertainties for all curves were less than 5%, which is recommended for a dosimetric system routine. The developed ionization chamber showed to be suitable as a dosimeter on line, independently of the spectrum degradation caused by the absorption of the 60Co photons in the material under dynamic irradiation.
|
Page generated in 0.0613 seconds