1 |
Estimation of Dosing Strategies for IndividualisationJönsson, Siv January 2004 (has links)
<p>To increase the proportion of patients with successful drug treatment, dose individualisation on the basis of one or several patient characteristics, <i>a priori</i> individualisation, and/or on the basis of feedback observations from the patient following an initial dose, <i>a posteriori</i> individualisation, is an option. Efficient tools in optimising individualised dosing strategies are population models describing pharmacokinetics (PK) and the relation between pharmacokinetics and pharmacodynamics (PK/PD).</p><p>Methods for estimating optimal dosing strategies, with a discrete number of doses, for dose individualisation <i>a priori</i> and <i>a posteriori</i> were developed and explored using simulated data. The methods required definitions of (<i>i</i>) the therapeutic target, <i>i.e. </i>the value of the target variable and a risk function quantifying the seriousness of deviation from the target, (<i>ii</i>) a population PK/PD model relating dose input to the target variable in the patients to be treated, and (<i>iii</i>) distributions of relevant patient factors. Optimal dosing strategies, in terms of dose sizes and individualisation conditions, were estimated by minimising the overall risk. Factors influencing the optimal dosing strategies were identified. Consideration of those will have implications for study design, data collection, population model development and target definition.</p><p>A dosing strategy for <i>a priori</i> individualisation was estimated for NXY-059, a drug under development. Applying the estimated dosing strategy in a clinical study resulted in reasonable agreement between observed and expected outcome, supporting the developed methodology.</p><p>Estimation of a dosing strategy for <i>a posteriori</i> individualisation for oxybutynin, a drug marketed for the treatment of overactive bladder, illustrated the implementation of the method when defining the therapeutic target in terms of utility and responder probability, that is, as a combination of the desired and adverse effects.</p><p>The proposed approach provides an estimate of the maximal benefit expected from individualisation and, if individualisation is considered clinically superior, the optimal conditions for individualisation. The main application for the methods is in drug development where the methods can be generally employed in the establishment of dosing strategies for individualisation with relevant extensions regarding population model complexity and individualisation conditions.</p>
|
2 |
Estimation of Dosing Strategies for IndividualisationJönsson, Siv January 2004 (has links)
To increase the proportion of patients with successful drug treatment, dose individualisation on the basis of one or several patient characteristics, a priori individualisation, and/or on the basis of feedback observations from the patient following an initial dose, a posteriori individualisation, is an option. Efficient tools in optimising individualised dosing strategies are population models describing pharmacokinetics (PK) and the relation between pharmacokinetics and pharmacodynamics (PK/PD). Methods for estimating optimal dosing strategies, with a discrete number of doses, for dose individualisation a priori and a posteriori were developed and explored using simulated data. The methods required definitions of (i) the therapeutic target, i.e. the value of the target variable and a risk function quantifying the seriousness of deviation from the target, (ii) a population PK/PD model relating dose input to the target variable in the patients to be treated, and (iii) distributions of relevant patient factors. Optimal dosing strategies, in terms of dose sizes and individualisation conditions, were estimated by minimising the overall risk. Factors influencing the optimal dosing strategies were identified. Consideration of those will have implications for study design, data collection, population model development and target definition. A dosing strategy for a priori individualisation was estimated for NXY-059, a drug under development. Applying the estimated dosing strategy in a clinical study resulted in reasonable agreement between observed and expected outcome, supporting the developed methodology. Estimation of a dosing strategy for a posteriori individualisation for oxybutynin, a drug marketed for the treatment of overactive bladder, illustrated the implementation of the method when defining the therapeutic target in terms of utility and responder probability, that is, as a combination of the desired and adverse effects. The proposed approach provides an estimate of the maximal benefit expected from individualisation and, if individualisation is considered clinically superior, the optimal conditions for individualisation. The main application for the methods is in drug development where the methods can be generally employed in the establishment of dosing strategies for individualisation with relevant extensions regarding population model complexity and individualisation conditions.
|
3 |
Population Pharmacokinetics and Dosing Recommendations of Vancomycin in Neonates Using Modeling and Simulation ApproachBhongsatiern, Jiraganya (JJ) January 2015 (has links)
No description available.
|
4 |
Direct Thrombin Inhibitors in Treatment and Prevention of Venous Thromboembolism: Dose – Concentration – Response RelationshipsCullberg, Marie January 2006 (has links)
<p>For prevention and treatment of thrombotic diseases with an anticoagulant drug it is important that an adequate dose is given to avoid occurrence or recurrence of thrombosis, without increasing the risk of bleeding and other adverse events to unacceptable levels. The aim of this thesis was to develop mathematical models that describe the dose-concentration (pharmacokinetic) and concentration-response (pharmacodynamic) relationships of direct thrombin inhibitors, in order to estimate optimal dosages for treatment and long-term secondary prevention of venous thromboembolism (VTE).</p><p>Population pharmacokinetic-pharmacodynamic models were developed, based on data from clinical investigations in healthy volunteers and patients receiving intravenous inogatran, subcutaneous melagatran and/or its oral prodrug ximelagatran. The benefit-risk profiles of different ximelagatran dosages were estimated using clinical utility functions. These functions were based on the probabilities and fatal consequences of thrombosis, bleeding and elevation of the hepatic enzyme alanine aminotransferase (ALAT).</p><p>The studies demonstrate that the pharmacokinetics of melagatran and ximelagatran were predictable and well correlated to renal function. The coagulation marker, activated partial thromboplastin time (APTT), increased non-linearly with increasing thrombin inhibitor plasma concentration. Overall, the systemic melagatran exposure (AUC) and APTT were similarly predictive of thrombosis and bleedings. The identified relationship between the risk of ALAT-elevation and melagatran AUC suggests that the incidence approaches a maximum at high exposures. The estimated clinical utility was favourable compared to placebo in the overall study population and in special subgroups of patients following fixed dosing of ximelagatran for long-term secondary prevention of VTE. Individualized dosing was predicted to add limited clinical benefit in this indication.</p><p>The models developed can be used to support the studied dosage and for selection of alternative dosing strategies that may improve the clinical outcome of ximelagatran treatment. In addition, the models may be extrapolated to aid the dose selection in clinical trials with other direct thrombin inhibitors.</p>
|
5 |
Direct Thrombin Inhibitors in Treatment and Prevention of Venous Thromboembolism: Dose – Concentration – Response RelationshipsCullberg, Marie January 2006 (has links)
For prevention and treatment of thrombotic diseases with an anticoagulant drug it is important that an adequate dose is given to avoid occurrence or recurrence of thrombosis, without increasing the risk of bleeding and other adverse events to unacceptable levels. The aim of this thesis was to develop mathematical models that describe the dose-concentration (pharmacokinetic) and concentration-response (pharmacodynamic) relationships of direct thrombin inhibitors, in order to estimate optimal dosages for treatment and long-term secondary prevention of venous thromboembolism (VTE). Population pharmacokinetic-pharmacodynamic models were developed, based on data from clinical investigations in healthy volunteers and patients receiving intravenous inogatran, subcutaneous melagatran and/or its oral prodrug ximelagatran. The benefit-risk profiles of different ximelagatran dosages were estimated using clinical utility functions. These functions were based on the probabilities and fatal consequences of thrombosis, bleeding and elevation of the hepatic enzyme alanine aminotransferase (ALAT). The studies demonstrate that the pharmacokinetics of melagatran and ximelagatran were predictable and well correlated to renal function. The coagulation marker, activated partial thromboplastin time (APTT), increased non-linearly with increasing thrombin inhibitor plasma concentration. Overall, the systemic melagatran exposure (AUC) and APTT were similarly predictive of thrombosis and bleedings. The identified relationship between the risk of ALAT-elevation and melagatran AUC suggests that the incidence approaches a maximum at high exposures. The estimated clinical utility was favourable compared to placebo in the overall study population and in special subgroups of patients following fixed dosing of ximelagatran for long-term secondary prevention of VTE. Individualized dosing was predicted to add limited clinical benefit in this indication. The models developed can be used to support the studied dosage and for selection of alternative dosing strategies that may improve the clinical outcome of ximelagatran treatment. In addition, the models may be extrapolated to aid the dose selection in clinical trials with other direct thrombin inhibitors.
|
Page generated in 0.0913 seconds