1 |
Double Domination Edge Critical GraphsHaynes, Teresa W., Thacker, Derrick 01 March 2009 (has links)
In a graph G = (V,E), a subset S ⊆ V is a double dominating set if every vertex in V is dominated at least twice. The minimum cardinality of a double dominating set of G is the double domination number. A graph G is double domination edge critical if for any edge uv ε E(Ḡ), the double domination number of G + uv is less than the double domination number of G. We investigate double domination edge critical graphs and characterize the trees and cycles having this property. Then we concentrate on double domination edge critical graphs having small double domination numbers. In particular, we characterize the ones with double domination number three and subfamilies of those with double domination number four.
|
2 |
Double Domination Edge Critical Graphs.Thacker, Derrick Wayne 06 May 2006 (has links)
In a graph G=(V,E), a subset S ⊆ V is a double dominating set if every vertex in V is dominated at least twice. The minimum cardinality of a double dominating set of G is the double domination number. A graph G is double domination edge critical if for any edge uv ∈ E(G̅), the double domination number of G+uv is less than the double domination number of G. We investigate properties of double domination edge critical graphs. In particular, we characterize the double domination edge critical trees and cycles, graphs with double domination numbers of 3, and graphs with double domination numbers of 4 with maximum diameter.
|
Page generated in 0.1513 seconds