• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Optimization of an Airflow Window with Between-the-Panes Shading Device

Hadlock, Chris January 2006 (has links)
Abstract <br /> This thesis deals with the numerical investigation of the upper section of a building-integrated photovoltaic/thermal double-fa??ade. The upper section consists of an airflow window with a between-the-panes roller blind. The purpose of this thesis is to develop and validate a numerical model in order to optimize the design of the system. The lower section, which consists of building-integrated photovoltaics, has already been modelled at Concordia University. The results from the lower section will be used as inputs to the upper section. <br /><br /> The validation of the model was carried out in three stages. In the first stage, the model was validated for forced convection between parallel plates using analytical data as benchmarks. In the second stage, a radiation analysis was performed for single, double and triple-glazed closed system with natural convection only. In the third and final validation stage, experimental data gathered from the Solar Lab at Concordia University was compared to the numerical model. The model included the effects of radiation for an open system with forced convection and a between-the-panes roller blind. For all three stages of validation, the results from the model were in excellent agreement with the benchmarking data. <br /><br /> Once the model was validated, a parametric analysis was used to determine the effects of varying key model parameters. The outlet temperature, the useful energy gain, and the net energy gain of the system were plotted as a function of inlet velocity. It was concluded that as the flow rate through the cavity was increased, the air temperature at the outlet approached that of the outdoor ambient air. By computing the heat generated from advection as well as the total losses from the system, including the heat lost from the indoor environment as well as the power consumed by the fan, the net useful heat gain of the system was calculated as a function of insolation level. Operating points (of the fan) for the upper section were therefore determined as functions of insolation level. A second order polynomial equation provided an excellent fit to the data and could therefore be used to determine the ideal operating point of the upper section for any insolation level.
2

Modelling and Optimization of an Airflow Window with Between-the-Panes Shading Device

Hadlock, Chris January 2006 (has links)
Abstract <br /> This thesis deals with the numerical investigation of the upper section of a building-integrated photovoltaic/thermal double-façade. The upper section consists of an airflow window with a between-the-panes roller blind. The purpose of this thesis is to develop and validate a numerical model in order to optimize the design of the system. The lower section, which consists of building-integrated photovoltaics, has already been modelled at Concordia University. The results from the lower section will be used as inputs to the upper section. <br /><br /> The validation of the model was carried out in three stages. In the first stage, the model was validated for forced convection between parallel plates using analytical data as benchmarks. In the second stage, a radiation analysis was performed for single, double and triple-glazed closed system with natural convection only. In the third and final validation stage, experimental data gathered from the Solar Lab at Concordia University was compared to the numerical model. The model included the effects of radiation for an open system with forced convection and a between-the-panes roller blind. For all three stages of validation, the results from the model were in excellent agreement with the benchmarking data. <br /><br /> Once the model was validated, a parametric analysis was used to determine the effects of varying key model parameters. The outlet temperature, the useful energy gain, and the net energy gain of the system were plotted as a function of inlet velocity. It was concluded that as the flow rate through the cavity was increased, the air temperature at the outlet approached that of the outdoor ambient air. By computing the heat generated from advection as well as the total losses from the system, including the heat lost from the indoor environment as well as the power consumed by the fan, the net useful heat gain of the system was calculated as a function of insolation level. Operating points (of the fan) for the upper section were therefore determined as functions of insolation level. A second order polynomial equation provided an excellent fit to the data and could therefore be used to determine the ideal operating point of the upper section for any insolation level.
3

Development of a Design-Phase Assessment Tool for Double Façades in Retrofit Applications

Vance, Emily January 2013 (has links)
Much of the existing commercial building stock is aging and will be in need of upgrades now or within the next twenty years. Typically, enclosure retrofits consist of adding insulation to the exterior or interior of the existing façade. In this thesis, an alternative solution is examined, whereby a glass façade is added to the exterior of the existing building, forming a double façade. For historic buildings, this could preserve and protect the existing façade without completely covering it up. For outdated buildings, this could modernize the existing façade, giving it the all-glazed appearance that is currently so popular among architects. Regardless of the retrofit motive, it is important to be able to quantitatively compare retrofit solutions to make informed design decisions. As such, building simulation can be an important design tool. At present, there is no available simulation tool that can easily and accurately model a double façade; therefore, a double façade (DoFa) model was developed to fill this gap. A spreadsheet-based, lumped model was created and validated using current complex fenestration models and limited experimental data. Further experimental data is required to validate all aspects of the model. Results showed that the DoFa model can achieve accurate results; however, further development is needed to predict optical properties of venetian blinds and convective coefficients for natural airflow in double façade cavities. The model was used to compare double façades to traditional glazing systems. Results indicated that double façades can perform comparably to double glazing with outdoor shading in summer, and triple glazing in winter. However, the results are only valid for the tested glazing systems. In a second application, the DoFa model was modified to simulate an entire enclosure to compare a double façade retrofit to more traditional retrofit strategies. Results suggested that a double façade provides a good improvement in winter performance, though summer overheating is a concern. For the case study examined, a double façade would have performed better than the chosen retrofit of replacing the windows with double glazing and indoor shading, without insulating the opaque components. The DoFa model can be very useful in creating double façade preliminary design and operation strategies. At present, the DoFa model is an instantaneous, stand-alone tool. Further development is needed to pair the DoFa model with whole building energy simulations.
4

Development of a Design-Phase Assessment Tool for Double Façades in Retrofit Applications

Vance, Emily January 2013 (has links)
Much of the existing commercial building stock is aging and will be in need of upgrades now or within the next twenty years. Typically, enclosure retrofits consist of adding insulation to the exterior or interior of the existing façade. In this thesis, an alternative solution is examined, whereby a glass façade is added to the exterior of the existing building, forming a double façade. For historic buildings, this could preserve and protect the existing façade without completely covering it up. For outdated buildings, this could modernize the existing façade, giving it the all-glazed appearance that is currently so popular among architects. Regardless of the retrofit motive, it is important to be able to quantitatively compare retrofit solutions to make informed design decisions. As such, building simulation can be an important design tool. At present, there is no available simulation tool that can easily and accurately model a double façade; therefore, a double façade (DoFa) model was developed to fill this gap. A spreadsheet-based, lumped model was created and validated using current complex fenestration models and limited experimental data. Further experimental data is required to validate all aspects of the model. Results showed that the DoFa model can achieve accurate results; however, further development is needed to predict optical properties of venetian blinds and convective coefficients for natural airflow in double façade cavities. The model was used to compare double façades to traditional glazing systems. Results indicated that double façades can perform comparably to double glazing with outdoor shading in summer, and triple glazing in winter. However, the results are only valid for the tested glazing systems. In a second application, the DoFa model was modified to simulate an entire enclosure to compare a double façade retrofit to more traditional retrofit strategies. Results suggested that a double façade provides a good improvement in winter performance, though summer overheating is a concern. For the case study examined, a double façade would have performed better than the chosen retrofit of replacing the windows with double glazing and indoor shading, without insulating the opaque components. The DoFa model can be very useful in creating double façade preliminary design and operation strategies. At present, the DoFa model is an instantaneous, stand-alone tool. Further development is needed to pair the DoFa model with whole building energy simulations.
5

Městská knihovna v Přerově / City Library of Přerov

Ptačin, Ján January 2012 (has links)
The new public library building needs to meet a lot of diverse demands. It has to be developed in conjunction with librarian's needs, it has to react on existing urban conditions and it needs to be self-defining and future oriented, so it will be able to cope with radical changes in the communications we experience nowadays. Our proposition is a reaction to the impulses of the site combined with our view of what a new library should represent. It is: communication, interaction, inspiration. We try to eliminate negative aspects of the selected site and on the other hand, use and develop existing potential. The building tries to terminate the big crossroads next to the site and on the contrary to create a nice quiet public space with the church. It also wants to be a new landmark and icon of the town. The solution we found is based on two main principles. A fence. And a hill. Fence as a guard and prevention from crossroads, as a closure of the urban block and public space with green and church building inside, as a boarder with the industrial part of the town, as a show-off wall, a allure to the world of wisdom and quiet public space behind... It is represented by double glass facade along the border of the site. Hill as an activator of the site, as an icon and a brand of the place, as a second hill in whole town, as an island and oasis, as a place for sport, play, as an open public reading room, as a natural amphitheatre... It consists of a simple green roof raising from the church towards the sky, covering the library buiding.
6

Dobudování VUT - Fakulta výtvarných umění / Completion of the BUT - Faculty of Fine Arts

Jelínková, Barbora January 2014 (has links)
The theme of the thesis is a study of the project of the Faculty of Fine Arts in Brno. Preparatory work has dealt whole complex, including faculty of Forensic Engineering and common areas for both faculty. Thesis follows up only study of FFA and common facilities. There are public garages in three underground levels as a compensation for the abolition of the existing parking on the property. Urban and mass solution creates a complex of buildings with a city-forming character and allows going throw the area. There are applying principles of double hanging facade on the building, which allows original artistic design of buildings.
7

Městská knihovna, Lausanne / City Library, Lausanne

Hradec, Miloš January 2013 (has links)
two towers: vertical library with spiral ramp
8

Vzduchový kolektor v tepelné bilanci budovy / Air-collector in heat balance of building

Dosedlová, Anna January 2013 (has links)
The subject of the thesis is the use of solar thermal technology for the production of low-potential heat. The theoretical part is focus in the solar technology, variants of passive use of solar energy. Describes in detail the solar facades, it's classification in terms of basic criteria. Applications on the project forced ventilation in administrative buildings, installation of solar facade. The work also includes an experiment that deals with the thermal behavior of the air collector.

Page generated in 0.0537 seconds