Spelling suggestions: "subject:"double woman domination""
1 |
Perfect Double Roman Domination of TreesEgunjobi, Ayotunde T., Haynes, Teresa W. 30 September 2020 (has links)
For a graph G with vertex set V(G) and function f:V(G)→{0,1,2,3}, let Vi be the set of vertices assigned i by f. A perfect double Roman dominating function of a graph G is a function f:V(G)→{0,1,2,3} satisfying the conditions that (i) if u∈V0, then u is either adjacent to exactly two vertices in V2 and no vertex in V3 or adjacent to exactly one vertex in V3 and no vertex in V2; and (ii) if u∈V1, then u is adjacent to exactly one vertex in V2 and no vertex in V3. The perfect double Roman domination number of G, denoted γdRp(G), is the minimum weight of a perfect double Roman dominating function of G. We prove that if T is a tree of order n≥3, then γdRp(T)≤9n∕7. In addition, we give a family of trees T of order n for which γdRp(T) approaches this upper bound as n goes to infinity.
|
2 |
Perfect Double Roman Domination of TreesEgunjobi, Ayotunde 01 May 2019 (has links)
See supplemental content for abstract
|
3 |
Double Roman DominationBeeler, Robert A., Haynes, Teresa W., Hedetniemi, Stephen T. 01 October 2016 (has links)
For a graph G=(V,E), a double Roman dominating function is a function f:V→{0,1,2,3} having the property that if f(v)=0, then vertex v must have at least two neighbors assigned 2 under f or one neighbor with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor with f(w)≥2. The weight of a double Roman dominating function f is the sum f(V)=∑v∈Vf(v), and the minimum weight of a double Roman dominating function on G is the double Roman domination number of G. We initiate the study of double Roman domination and show its relationship to both domination and Roman domination. Finally, we present an upper bound on the double Roman domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound.
|
Page generated in 0.1027 seconds