• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward a Perceptual-Cognitive Account of Double-Time Feel in Jazz

Voglewede, Matthew 03 October 2013 (has links)
The New Grove Dictionary of Jazz defines “double time” as “the apparent doubling of the tempo […] achieved by halving the prevailing note value.” A more precise term for this concept is “double-time feel.” The question of how a musical performance creates double-time feel has received little scholarly attention. Grove’s explanation is incomplete because “halving the prevailing note value” is sometimes perceived by listeners as diminution within an unchanged tempo. My hypothesis is that swing rhythm, pervasive in many styles of jazz, not only facilitates the use of double-time feel but allows for subtle gradations in its use. I offer a model that classifies rhythms according to how strongly they support (or undermine) a double-time feel in a swing rhythm context, and I apply the model to performances by Louis Armstrong and Lee Morgan. My analysis demonstrates these artists’ fine-grained control over double-time feel and suggests directions for future research.
2

A Study of the Treatment of Time in the Plays of Lyly, Marlowe, Greene, and Peele

Fussell, Mildred 06 1900 (has links)
Because Shakespeare borrowed so many ideas and devices from other writers, we wonder whether he also borrowed the trick of double time from some of his predecessors; therefore one of the purposes of this study is to discover whether or not this device was original with Shakespeare. In this study I have considered the works of John Lyly, Christopher Marlowe, Robert Greene, and George Peele because these four seem to have influenced Shakespeare more than did any of the other of his immediate predecessors. To discover what influence, if any, these men had upon Shakespeare ts treatment of time is not, however, the only purpose of this study; for I am also interested in the characteristics of the works of these men for their own values, independent of any influence which they may have had on the works of Shakespeare.
3

Real-Time DMRG Dynamics Of Spin And Charge Transport In Low-Dimensional Strongly Correlated Fermionic Systems

Dutta, Tirthankar 05 1900 (has links) (PDF)
This thesis deals with out-of-equilibrium transport phenomena in strongly correlated low-dimensional fermionic systems, with special emphasis on π-conjugated molecular materials. The focus of this work is to study real-time dynamics of spin and charge transport in these systems in order to investigate non-equilibrium transport in single-molecule electronic and spintronic devices. Chapter 1 describes the electronic structure and dynamics of strongly correlated fermionic systems in general, and in one-dimension, in particular. For this purpose, effective low-energy model Hamiltonians (used in this work) are discussed. Whenever applicable, approximate analytical and numerical methods commonly used in the literature to deal with these model Hamiltonians, are outlined. In the context of one-dimensional strongly correlated fermionic systems, analytical techniques like the Bethe ansatz and bosonization, and numerical procedures like exact diagonalization and DMRG, used for solving finite systems, are discussed in detail. Chapter 2 provides an overview of the different zero-temperature (T = 0) time-dependent DMRG algorithms, which have been used to study out-of-equilibrium time-dependent phenomena in low-dimensional strongly correlated systems. In Chapter 3 we employ the time-dependent DMRG algorithm proposed by Luo, Xiang and Wang [Phys. Rev. Lett. 91, 049701 (2003)], to study the role of dimerization and electronic correlations on the dynamics of spin-charge separation. We employ the H¨uckel and Hubbard models for our studies. We have modified the algorithm proposed by Luo et. al to overcome some of its limitations. Chapter 4 presents a generalized adaptive time-dependent density matrix renormalization group (DMRG) scheme developed by us, called the Double Time Window Targeting (DTWT) technique, which is capable of giving accurate results with lesser computational resources than required by the existing methods. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et. al, [Phys.Rev. Lett. 91, 049701 (2003)], and the time-step targeting (TST) algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. In chapter 5 we apply the Double Time Window Targeting (DTWT) technique, which was discussed in the previous chapter, for studying real-time quantum dynamics of spin-charge separation in π-conjugated polymers. We employ the Pariser-Parr-Pople (PPP) model which has long-range electron-electron interactions. For investigating real-time dynamics of spin and charge transport, we inject a hole at one end of polyene chains of different lengths and study the temporal evolution of its spin and charge degrees of freedom, using the DTWT td-DMRG algorithm. Chapter 6 we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes (D- (CH)x- A) chains, also known as push-pull polyenes. We employ long-range correlated model Hamiltonian for the D- (CH)x- A system and, real-time DMRG dynamics for time propagating the wave packet obtained by injecting a hole at a terminal site in the ground state of the system. Our studies reveal that the end groups do not affect the spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these with the polymethineimine (CN)x system in which besides electron affinities, the nature of pz orbitals in conjugation also alternate from site to site. Chapter 7 presents our investigation on the effect of static electron-phonon coupling (dimerization) on the dynamics of spin-charge separation in particular, and transport in general, in π-conjugated polyene chains. The polyenes are modeled by the Pariser-Parr-Pople Hamiltonian, having long-range electron-electron correlations. Our studies reveal that spin and charge velocities depend both on the chain length and dimerization. The spin and charge velocities increase as dimerization increases, but the amount of charge and spin transported along the chain decrease with enhancement in dimerization. Furthermore, in the range 0.3≤ δ≤0.5, it is observed that the dynamics of spin-charge separation becomes complicated, and the charge degree of freedom is affected more by electron-phonon coupling compared to the spin degree of freedom.

Page generated in 0.0673 seconds