• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Notes on Foregger's conjecture

Melnykova, Kateryna 20 September 2012 (has links)
This thesis is devoted to investigation of some properties of the permanent function over the set Omega_n of n-by-n doubly stochastic matrices. It contains some basic properties as well as some partial progress on Foregger's conjecture. CONJECTURE[Foregger] For every n\in N, there exists k=k(n)>1 such that, for every matrix A\in Omega_n, per(A^k)<=per(A). In this thesis the author proves the following result. THEOREM For every c>0, n\in N, for all sufficiently large k=k(n,c), for all A\in\Omega_n which minimum nonzero entry exceeds c, per(A^k)<=per(A). This theorem implies that for every A\in\Omega_n, there exists k=k(n,A)>1 such that per(A^k)<=per(A).
2

Notes on Foregger's conjecture

Melnykova, Kateryna 20 September 2012 (has links)
This thesis is devoted to investigation of some properties of the permanent function over the set Omega_n of n-by-n doubly stochastic matrices. It contains some basic properties as well as some partial progress on Foregger's conjecture. CONJECTURE[Foregger] For every n\in N, there exists k=k(n)>1 such that, for every matrix A\in Omega_n, per(A^k)<=per(A). In this thesis the author proves the following result. THEOREM For every c>0, n\in N, for all sufficiently large k=k(n,c), for all A\in\Omega_n which minimum nonzero entry exceeds c, per(A^k)<=per(A). This theorem implies that for every A\in\Omega_n, there exists k=k(n,A)>1 such that per(A^k)<=per(A).
3

Permanents of doubly stochastic matrices

Troanca, Laurentiu Ioan 07 May 2008 (has links)
If A is an nxn matrix, then the permanent of A is the sum of all products of entries on each of n! diagonals of A. Also, A is called doubly stochastic if it has non-negative entries and the row and column sums are all equal to one. A conjecture on the minimum of the permanent on the set of doubly stochastic matrices was stated by van der Waerden in 1926 and became one of the most studied conjectures for permanents. It was open for more than 50 years until, in 1981, Egorychev and Falikman independently settled it. Another conjecture (which, if it were true, would imply the van der Waerden conjecture) was originally stated by Holens in 1964 in his M.Sc. thesis at the University of Manitoba. Three years later, Dokovic independently introduced an equivalent conjecture. This conjecture is now known as the Holens-Dokovic conjecture, and while known not to be true in general, it still remains unresolved for some specific cases. This thesis is devoted to the study of these and other conjectures on permanents.
4

Permanents of doubly stochastic matrices

Troanca, Laurentiu Ioan 07 May 2008 (has links)
If A is an nxn matrix, then the permanent of A is the sum of all products of entries on each of n! diagonals of A. Also, A is called doubly stochastic if it has non-negative entries and the row and column sums are all equal to one. A conjecture on the minimum of the permanent on the set of doubly stochastic matrices was stated by van der Waerden in 1926 and became one of the most studied conjectures for permanents. It was open for more than 50 years until, in 1981, Egorychev and Falikman independently settled it. Another conjecture (which, if it were true, would imply the van der Waerden conjecture) was originally stated by Holens in 1964 in his M.Sc. thesis at the University of Manitoba. Three years later, Dokovic independently introduced an equivalent conjecture. This conjecture is now known as the Holens-Dokovic conjecture, and while known not to be true in general, it still remains unresolved for some specific cases. This thesis is devoted to the study of these and other conjectures on permanents.

Page generated in 0.0901 seconds