• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of numerical simulation to existing experimental data involving downwash wake reduction for the V-22 Osprey

O'Hara, Brian January 2005 (has links)
Thesis (M.S.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains viii, 53 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 45-46).
2

Incorporation and preservation of geochemical fingerprints in peat archives

Hansson, Sophia V. January 2013 (has links)
The present status of the environment, including environmental problems such as heavy metal accumulation in aquatic and terrestrial ecosystems, is in part the consequence of long-term changes. Cores from peatlands and other natural archives provide us with the potential to study aspects of the atmospheric cycling of elements, such as metal pollutants, on timescales much longer than the decade or two available to us with atmospheric deposition monitoring programs. The past decade especially has seen a rapid increase in interest in the biogeochemical record preserved in peat, particularly as it relates to environmental changes (e.g. climate and pollution). Importantly, recent studies have shown that carbon dynamics, i.e., organic matter decomposition, may influence the record of atmospherically derived elements such as halogens and mercury. Other studies have shown that under certain conditions some downward movement of atmospherically deposited elements may also occur, which adds complexity to establishing reliable chronologies as well as inherent problems of estimating accurate accumulation rates of peat and past metal deposition. Thus, we still lack a complete understanding of the basic biogeochemical processes and their effects on trace element distributions. While many studies have validated the general temporal patterns of peat records, there has been a limited critical examination of accumulation records in quantitative terms. To be certain that we extract not only a qualitative record from peat, it is important that we establish a quantitative link between the archive and the few to several decades of data that are available from contemporary monitoring and research. The main objective of this doctoral thesis was to focus on improving the link between the long-term paleorecord and the contemporary monitoring data available from biomonitoring and direct deposition observations. The main research questions have therefore been: Are peat archives an absolute or relative record? And how are geochemical signals, including dating, incorporated in the peat archive? What temporal resolution is realistic to interpret by using peat cores?
3

Zatížení střechy vzdušným proudem vrtulníku při montážních pracích / Air flow load on a roof structure induced by a helicopter during erection works

Fidler, Tomáš January 2013 (has links)
Diploma thesis is focused on modeling rotor downwash generated by the main rotor of helicopter and analyzing its effects on the roof structure. Theoretical definition of rotor downwash flow is described in the first part of the text. Governing equations of computational fluid dynamics are briefly explained as well as boundary layer and finite volume method. Next part inquires into numerical simulation of rotor downwash based on height of rotor above the roof, shape of roof plane and climatic conditions. Results are compared with climatic load values provided by actual Czech construction standard in the end of the text.

Page generated in 0.02 seconds